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ABSTRACT
Entity linking is a standard component in modern retrieval system

that is often performed by third-party toolkits. Despite the plethora

of open source options, it is difficult to find a single system that has

a modular architecture where certain components may be replaced,

does not depend on external sources, can easily be updated to newer

Wikipedia versions, and, most important of all, has state-of-the-

art performance. The REL system presented in this paper aims to

fill that gap. Building on state-of-the-art neural components from

natural language processing research, it is provided as a Python

package as well as a web API. We also report on an experimental

comparison against both well-established systems and the current

state-of-the-art on standard entity linking benchmarks.
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1 INTRODUCTION
Entity linking (EL) refers to the task of recognizing mentions of

specific entities in text and assigning unique identifiers to them

from an underlying knowledge repository [2]. The problems of

entity recognition and disambiguation have traditionally been stud-

ied in the natural language processing (NLP) community. It was

also them who first recognized the utility of Wikipedia as a large-

scale knowledge repository to disambiguate against [4, 6]. This

line of work has been quickly followed up by information retrieval

(IR) researchers [17, 18]. Over the past years, entity linking has

become a standard component in modern retrieval systems, and

has been leveraged in a range of tasks, including document rank-

ing [26], entity retrieval [11], knowledge base population [3], and
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query recommendation [23]. Since entity linking is not the main

focus of these works, it is commonly performed by some third-party

toolkit, with the resulting annotations being utilized in downstream

processing. Some of the most prominent toolkits used for this pur-

pose include DBpedia Spotlight [16], TAGME [7], WAT [21], and

FEL [19].

Existing toolkits fall short in a number of areas. Some are un-

maintained [19]; others are meant for short text and inefficient

for long text [12]; some rely on external sources like web search

engines [5]. Typically, they are shipped with a specific Wikipedia

version that has become dated, causing difficulties when attempt-

ing to update to a recent Wikipedia [5, 21]. An issue that is often

not addressed is the lack of speed (throughput). Most importantly,

none of the default open source entity linkers incorporate recent

progress made in the NLP community on neural network-based

approaches [14]. With this work, we aim to close that gap and rem-

edy all of these problems by introducing an efficient, up-to-date

entity linker that has a modular architecture to ease, e.g., updates

of external resources like Wikipedia.

We present REL
1
(which stands for Radboud Entity Linker), an

open source toolkit for entity linking. REL stands on the shoulders

of giants and is an ensemble of multiple methods and packages

from the state-of-the-art natural language processing research. REL

has been developed with the following design considerations:

• Use state-of-the-art approaches for entity disambiguation (ED) [8,

15] and named entity recognition (NER) [1], ensuring it is on par

with the state-of-the-art on end-to-end entity linking [14].

• Use a modular architecture with mention detection (using a NER

approach) and entity disambiguation components. Specifically,

separating mention detection from entity disambiguation en-

ables us to choose an NER method appropriate for the context

in which entity linking is employed (i.e., optimizing for recall vs.

throughput).

• Design for sufficient throughput; reporting 700 ms for an average

document of 300 words. Notably, most of the time is used for

NER, which could be changed to a more efficient option.

• Develop a lightweight solution that can be deployed on an aver-

age laptop/desktop machine; it does not need much RAM, and,

importantly, it does not need a GPU.

• Train on a recent Wikipedia dump (2019-07) and ensure easy up-
dates to new Wikipedia versions (all necessary scripts included).

REL is available at http://tiny.cc/RadboudEL under a MIT license,

can be deployed as a Python package, or used via a restful API.

1
REL in Dutch means mayhem, interference, or disturbance; and, it is easily recognized

to abbreviates ‘relatie’ (relation in English).
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2 ENTITY LINKING IN REL
In this section, we present the entity linking method underlying

REL. We follow a standard entity linking pipeline architecture [2],

consisting of three components: (i) mention detection, (ii) candidate

selection, and (iii) entity disambiguation.

2.1 Mention Detection
In the mention detection step, we aim to detect all text spans that

can be linked to entities. These text spans, referred to as mentions,
are obtained by employing a Named Entity Recognition (NER) tool.

NER taggers detect entity mentions in text and annotate them

with (coarse-grained) entity types [2]. We employ Flair [1], a state-

of-the-art NER based on contextualized word embeddings. Flair

takes the input to be a sequence of characters and passes it to a

bidirectional character-level neural language model to generate a

contextual string embedding for each word. These embeddings are

then utilized in a sequence labeling module to generate tags for

NER.

Using a NER method for mention detection enables us to strike

a balance between precision and recall. Another approach, which

may result in high recall, is matching all n-grams (up to a certain

n) in the input text against a rich dictionary of entity names [2, 10].

In REL, the mention detection component can easily be replaced

by another NER tagger such as spaCy
2
or by a dictionary-based

approach.

2.2 Candidate Selection
For each text span detected as a mention, we select up to k1 +
k2 (=7) candidate entities (following [8]). The k1 (=4) candidate

entities are selected from the top ranked entities based on the

mention-entity priorp(e |m), for a given entity e and amentionm. To

compute this prior, we sum up hyperlink counts fromWikipedia and

from the CrossWikis corpus [25] to estimate probability P
Wiki

(e |m).

A uniform probability PYAGO(e |m) is also extracted from YAGO

dictionary [13]. These two probabilities are combined into the final

P(e |m) prior as min(1, P
Wiki

(e |m) + PYAGO(e |m)) [8].

The other k2 (=3) candidate entities are chosen based on their

similarity to the context of the mention. This similarity score is

obtained by eT
∑
w ∈c w, where c is n-word (n = 50) context sur-

rounding mentionm and w and e are entity and word embedding

vectors. This score is computed for k (=30) entities with the highest

P(e |m) prior and the top-k2 entities are added to the list of candidate
entities [8].

In REL, we use Wikipedia2Vec word and entity embeddings [28]

to estimate the similarity between an entity and a mention’s local

context. Wikipedia2Vec jointly learns word and entity embeddings

from Wikipedia text and link structure, and is available as an open

source library [27]. The hyper-parameters k1, k2, k , and n are set

based on the recommended values in [8, 15].

2.3 Entity Disambiguation
In the entity disambiguation step, we link mentions to their corre-

sponding entities in the knowledge graph (here: Wikipedia). Entity

2
https://spacy.io/

disambiguation in REL is based on the Ment-norm method pro-

posed by Le and Titov [15]. Given an input document D, the entity
linking decisions are made by combining local compatibility (which

includes prior importance and contextual similarity) and coherence

with the other entity linking decisions in the document:

E∗ = argmax

E∈C1×...×Cn

n∑
i=1

ψ (ei , ci ) +
∑
i,j

ϕ(ei , ej ,D) , (1)

where Ci denotes the set of candidate entities for mentionmi and

E = {e1, .., en }. The coherence score between entity ei and its

local context ci is computed by the function ψ (ei , ci ) as defined
in [8], and the coherence between all entity linking decisions is

captured by the function ϕ(ei , ej ,D). Le and Titov [15] compute

the ϕ function by incorporating relations between mentions of a

document. Assuming K latent relations, ϕ is calculated as:

ϕ(ei , ej ,D) =
K∑
k=1

αi jke
T
i Rkej , (2)

where ei , ej ∈ Rd are the embeddings of entities ei , ej (using the

same embeddings as in the candidate selection step), Rk is a diago-

nal matrix, and αi jk is a normalized score defined as:

αi jk =
1

Zi jk
exp

{ f T (mi , ci )Dk f (mj , c j )
√
d

}
, (3)

where Dk ∈ Rd×d is a diagonal matrix, and function f is a single-

layer neural network that maps mentionmi and its context ci to a

d-dimensional vector. Zi jk is a normalization factor over j and is

computed as:

Zi jk =
n∑

j′=1
j′,i

exp

{ f T (mi , ci )Dk f (mj , c j )
√
d

}
. (4)

The optimization of Eq. (1) is performed using max-product loopy

belief propagation (LBP), and the final score for an entity of a men-

tion is obtained by a two-layer neural network that combines P(e |m)

with max-marginal probability of an entity for a given document.

The training of the model, referred to as the ED model henceforth,
is performed using max-margin loss. To estimate posterior proba-

bilities of the linked entities, we fit a logistic function over the final

scores obtained by the neural model [22].

3 IMPLEMENTATION AND USAGE
Next, we describe the implementation details and usage of REL.

3.1 Implementation Details
Memory and GPU usage. One of the design requirements of REL

is being lightweight, such that it can be deployed on an average ma-

chine. To minimize memory requirements, we store Wikipedia2Vec

entity and word embeddings, GloVe embeddings, and an index of

pre-computed P(e |m) values (i.e., a surface form dictionary) in a

SQLite3
3
database. Using SQLite, we are able to minimize mem-

ory usage for our API to 1.8GB if the user chooses to not preload

embeddings. REL also does not require GPU during inference. The

3
https://www.sqlite.org/index.html
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INPUT:
{"text": "Belgrade 1996-08-30 Result in an international

basketball tournament on Friday: Red Star ( Yugoslavia )
beat Dinamo ( Russia) 92-90 ( halftime 47-47 )."}

OUTPUT:
[
[0, 8, 'Belgrade ', 'Belgrade ', 0.91, 0.98, 'LOC ', ],
[80, 8, 'Red Star ', 'KK_Crvena_zvezda ', 0.36, 0.99, 'ORG '],
[91, 10, 'Yugoslavia ', 'Yugoslavia ', 0.8, 0.99, 'LOC '],
[109, 6, 'Dinamo ', 'FC_Dinamo_Bucuresti ', 0.7, 0.99, 'ORG '],
[118, 6, 'Russia ', 'Russia ', 0.85, 0.99, 'LOC ']
]

Figure 1: Example API input and output for entity linking.

neural model used for entity disambiguation is a feed-forward net-

work and does not require heavy CPU/GPU usage. Training of

Wikipedia2Vec embeddings, however, requires high memory and

is done more efficiently using a GPU.

REL components. REL has a modular architecture, with separate

components for mention detection, entity disambiguation, and the

generation of the P(e |m) index. The mention detection component

is based on the Flair package
4
and can be easily replaced by another

mention detection approach. The disambiguation component is

implemented using PyTorch and based on the source code of [15].
5

The generation of the P(e |m) index is based on the source code

of [8] and involves the parsing of Wikipedia, the CrossWikis cor-

pus, and YAGO. Any of these may be either removed completely,

or replaced by different corpora; using the resulting P(e |m) index

in the package instead.

ED Training. For the entity disambiguation method, we used the

AIDA-train dataset for training and AIDA-A for validation. We use

the Adam optimizer and reduce the learning rate from 1
−3

to 1
−4

once the F1-score of the validation set reaches 0.88 (following [15]).

Embeddings. The entity and word embeddings used for selecting

candidate entities are trained on a Wikipedia 2019-07 dump using

the Wikipedia2Vec package.
6
Following [9], we set the min-entity-

count parameter to zero and used the Wikipedia link graph during

training. For the entity disambiguation model, we used GloVe em-

beddings [20] as suggested in [15].

3.2 Usage
REL can be used as a Python package deployed on a local machine,

or as a service, via a restful API.

To use REL as a package, our GitHub repository contains step-

by-step tutorials on how to perform end-to-end entity linking, and

on how to (re-)train the ED model. We provide scripts and instruc-

tions for deploying REL using a new Wikipedia dump; this helps

REL users to keep up-to-date with emerging entities in Wikipedia,

and enables researchers to deploy REL for any specific Wikipedia

version that is required for a downstream task.

The API is publicly available. Given an input text, depicted in

Fig. 1 (Top), the API returns a list of mentions, each with (i) the

4
https://github.com/flairNLP/flair

5
https://github.com/lephong/mulrel-nel

6
https://wikipedia2vec.github.io/wikipedia2vec

Table 1: EL strongmatching results on theGERBIL platform.
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K
O
R
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5
0

Macro F1
Micro F1
DBpedia 52.0 42.4 42.0 41.4 21.5 26.7 33.7 29.4

Spotlight 57.8 40.6 44.4 43.1 24.8 27.2 32.2 34.9

WAT

70.8 62.6 53.2 51.8 45.0 45.3 44.4 37.3

73.0 64.5 56.4 53.9 49.2 42.3 38.0 49.6

SOTA NLP

82.6 73.0 56.6 47.8 45.4 43.8 43.2 26.2

82.4 72.4 61.9 52.7 50.3 38.2 34.1 35.2

REL (2014)

81.3 73.2 61.5 57.5 46.8 35.9 38.1 60.1
83.3 74.4 64.8 58.8 49.7 34.3 41.2 61.6

REL (2019)

78.6 71.1 61.8 57.4 45.7 36.2 38.0 50.1

80.5 72.4 63.1 58.3 49.9 35.0 41.1 50.7

Table 2: ED results on the GERBIL platform.
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5
0

Macro F1
Micro F1
DBpedia 53.7 43.6 30.4 43.0 41.8 42.6 50.3 48.7

Spotlight 56.1 42.1 35.8 43.1 43.4 34.6 43.3 52.3

WAT

79.8 79.7 62.2 0.0 59.2 62.8 70.4 52.4

80.5 78.8 64.9 0.0 63.1 63.9 69.5 62.2

SOTA NLP

83.8 88.5 73.2 76.7 63.4 66.6 65.3 52.4

83.0 86.2 74.0 78.1 67.3 68.6 65.4 60.8

REL (2014)

85.5 89.6 65.5 72.0 59.8 61.0 61.9 61.9
86.6 88.5 65.8 72.2 64.9 62.8 62.1 64.6

REL (2019)

82.9 86.3 64.0 67.0 58.2 61.7 62.3 54.4

84.0 85.8 64.3 67.3 64.9 64.1 62.0 54.0

start position and length of the mention, (ii) the mention itself,

(iii) the linked entity, (iv) the confidence score of ED, and (vi) the

confidence score and type of entity from the mention detection

step (if available); see Fig. 1 (Bottom). Alternatively, a user can use

the API for entity disambiguation only, by submitting an input text

and a list of spans (specified with start position and length).

4 EVALUATION
We compare REL with a state-of-the-art end-to-end entity link-

ing [14], referred to as SOTA NLP, and two popular well-established

entity linking systems: (i) DBpedia-spotlight [16] and (ii) WAT [21],

the updated version of TagMe [7]. We report the results for two

versions of our system. The first one, denoted as REL (2014), is based
on the original implementation of [15] for ED. It uses Wikipedia

2014 as the reference knowledge base and employs entity embed-

dings provided by [8] for candidate selection. The second version

of our system, denoted as REL (2019), is based onWikipedia 2019-07

and uses Wikipedia2Vec embeddings; cf. Section 3.
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Table 3: Local ED results as reported in [15]

A
I
D
A
-
B

A
C
E
2
0
0
4

A
q
u
a
i
n
t

C
L
U
E
W
E
B

M
S
N
B
C

W
i
k
i
p
e
d
i
a

Micro F1
MulRel-NEL [15] 93.1 89.9 88.3 77.5 93.9 78.0

REL (2014) 92.8 89.7 87.4 77.6 93.5 78.7

REL (2019) 89.4 85.3 84.1 71.9 90.7 73.1

Table 4: Efficiency of REL (in seconds) for 50 documents
from AIDA-B with > 200 words, which is 323 (± 105) words
and 42 (± 19) mentions per document.

Time MD Time ED
With GPU 0.44±0.22 0.24±0.08

Without GPU 2.41±1.24 0.18±0.09

We use the GERBIL platform [24] for evaluation, and report on

micro and macro InKB F1 scores for both EL and ED. Table 1 shows

the strong matching results for EL, where strong refers to the re-

quirement of exactly predicting the gold mention boundaries. We

first note that REL outperforms the well-established entity linking

toolkits (DBpedia Spotlight and WAT) by a large margin. Compar-

ing with SOTA NLP, we observe that REL (2019) outperforms (or

performs on par with) SOTA NLP on half of the datasets. The ED re-

sults in Table 2 also show consistent and significant improvements

of REL over the two well-established toolkits. SOTA NLP, however,

obtains better results than REL for all, except three datasets. For

both EL and ED results, we observe that REL (2014) achieves better

results compared to REL (2019). This can be attributed to the differ-

ent embeddings used for candidate selection: the recall of candidate

entities chosen by their similarity to the context of the mentions is

lower in REL (2019) when compared to REL (2014).

For a reference comparison, we also report the results of the ED

method (referred to as MulRel-NEL) as reported in [15]; see Table 3.

The micro F1 score reported in this table is computed locally and by

matching ED results against the original datasets. The results show

that REL (2014) and MulRel-NEL scores are almost identical, which

attests to the repeatability of [15]. Again, we observe a decrease in

performance when comparing REL (2019) to REL (2014), just like

in Table 2.

Finally, we report on the runtime efficiency of REL in Table 4.

Specifically, we measure efficiency on a random sample of 50 docu-

ments (with a minimum length of 200 words) taken from AIDA-B.

The experiments were run on a laptop with Intel i7 CPU (2.80GHz),

16GB RAM, and an NVIDIA Geforce GTX 1050 (4GB) GPU. The

results show that detecting the mentions takes considerably more

time than ED, and is done more efficiently using GPU. The ED time,

however, is less affected by the GPU usage. This indicates that the

overall efficiency of REL can be improved by replacing MD with a

more efficient NER approach.

5 CONCLUSION
We have introduced the Radboud Entity Linker (REL), an open

source toolkit for entity linking. REL builds on state-of-the-art

neural components from natural language processing research, and

is provided as a Python package and as a web API. Currently, REL is

optimized for annotating documents and short texts. In the future,

we plan to train REL on a large corpus of annotated queries and

make it available for the task of entity linking in queries as well.
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