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ABSTRACT
A significant portion of information needs in web search target en-
tities. These may come in different forms or flavours, ranging from
short keyword queries to more verbose requests, expressed in nat-
ural language. We address the task of automatically annotating
queries with target types from an ontology. The identified types
can subsequently be used, e.g., for creating semantically more in-
formed query and retrieval models, filtering results, or directing the
requests to specific verticals. Our study makes the following con-
tributions. First, we formalise the task of hierarchical target type
identification, argue that it is best viewed as a ranking problem,
and propose multiple evaluation metrics. Second, we develop a
purpose-built test collection by hand-annotating over 300 queries,
from various recent entity search benchmarking campaigns, with
target types from the DBpedia ontology. Finally, we introduce and
examine two baseline models, inspired by federated search tech-
niques. We show that these methods perform surprisingly well
when target types are limited to a flat list of top level categories;
finding the right level of granularity in the hierarchy, however, is
particularly challenging and requires further investigation.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.3 Information Search
and Retrieval

Keywords
Entity retrieval, semantic search, query classification

1. INTRODUCTION
A better understanding and processing of user queries is of vi-

tal interest to a number of information management and retrieval
tasks. A good deal of effort has been invested in recent years into
various aspects of this topic, including query segmentation [24],
named-entity recognition [12, 19], semantic tagging [18], struc-
tural annotation [6], intent discovery [16, 26], and topical classi-
fication [5, 13].
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In this paper, we focus on queries targeting entities. These typ-
ically come in two flavours: (i) looking for a specific entity, or (ii)
asking for a list of entities that are of a particular type or class.
It has been shown that more than 50% of queries in web search
fall into one of these categories [20]. Complementing keyword
queries with explicit type information—a scenario studied at the
TREC and INEX Entity Ranking tracks [4, 9]—has been shown
to significantly improve retrieval performance. Target types could
be used, among others, for building semantically more informed
query and retrieval models [3, 15], filtering results [8, 21], or iden-
tifying relevant verticals [1, 26]. In practice, however, the scenario
assumed at the above benchmarking initiatives, i.e., the user speci-
fying the target type, is a rather unrealistic one; common web users
prefer simple interfaces with a single search box. This motivates
the need for automatic methods for the target type identification of
entity-oriented queries.

In this paper, we introduce the task of hierarchical target type
identification: given a query, identify the type of relevant results
with respect to a given ontology. Specifically, we aim to find the
single most specific type within the ontology that is general enough
to cover all relevant entities. There are two key differences between
this task and prior work on the topic of classifying entity types of
queries [15, 25]: (i) our types are not a flat list, but are organised
into a hierarchical structure, and (ii) we require “instance of” rela-
tions between the target type and relevant entities, instead of mere
“relatedness.” Finding types with the appropriate granularity or
specificity opens up a number of novel application possibilities, for
example, in faceted browsing or result presentation.

The hierarchical target type identification task can naturally be
formulated as a ranking problem and evaluated using standard in-
formation retrieval metrics. However, taking the correctness of re-
sults to be a binary decision would not account for “near misses,”
such as returning items that are too general or too specific. There-
fore, we also consider a lenient evaluation, in which types on the
same path with the correct answer are also rewarded.

We develop a purpose-built test collection by taking a large num-
ber of queries from various recent entity search benchmarking cam-
paigns and hand-annotating them with target types from the DBpe-
dia ontology. Finally, we propose and examine two baseline mod-
els, inspired by federated search techniques. We find that even sim-
ple baselines can perform very well on identifying types from a flat
list, while the hierarchical case proves to be challenging.

In summary, this paper makes the following contributions: (1)
we identify the task of hierarchical query type identification, (2)
we develop a test set and evaluation methodology, (3) we introduce
two baseline methods and perform an experimental evaluation. The
resources we developed (query set and type annotations) are made
publicly available at http://bit.ly/SdpbZh.

http://bit.ly/SdpbZh


2. RELATED WORK
Query type classification has been studied for web document re-

trieval to categorise searches according to their geographical local-
ity [11], goal (such as informational or navigational) [14], vertical
intent (e.g., product, image, video) [1, 16], or topicality [17]. Of
these, vertical intent discovery is the closest to our task in spirit;
however, intents are usually limited to a handful a categories (2
in [16] and 18 in [1]) and are not hierarchically organised. A re-
lated task, question classification in a community-based question
answering portal is presented in [23]. The authors use a three-
level hierarchy of categories, however, questions are only associ-
ated with leaf level categories.

Little work has been done on classifying entity types of queries.
Vallet and Zaragoza [25] introduce the entity type ranking task:
find the most important types related to the query results. Their
approach ranks passages, extracts entities from them, and use the
types associated with these entities. There are two important differ-
ences between the task in [25] and ours: (1) they consider multiple
target types that are related to the query, but the query does not nec-
essarily have to fall into any of them, and (2) they use a flat set of
(64) types. Kaptein et al. [15] rank entities in Wikipedia and assign
Wikipedia categories automatically to the query by considering the
most frequent categories associated with the top 10 results. Again,
they do not consider the hierarchical structure of categories (due to
the fact that categorisation in Wikipedia is not a well-defined “is-a”
hierarchy).

3. PROBLEM STATEMENT
We formulate the problem of hierarchical target type identifica-

tion as follows:

Given an entity-oriented input query, find the single
most specific type from an ontology that is general
enough to cover all entities that are relevant to the query.

By entity-oriented queries we mean information needs where the
user’s intent is to find (i) a specific entity or (ii) a list of entities
that are of a particular type or class. It has to be noted that, even
for queries with a very clear entity intent, it may not be possible
to identify a single common category, apart from the root concept
(“Thing” in the DBpedia ontology), as we will show in Section 4.
For our task, however, we only consider queries for which there
exists a clearly preferred target type; automatic identification of
these queries is a non-trivial exercise, and an interesting problem
for future research, but it is outside the scope of this work.

We cast the hierarchical target type identification task as a rank-
ing problem (rather than a classification one) as this allows us to
give credit for “near-misses,” i.e., types that are too specific or too
general, instead of merely treating them as incorrect. Moreover,
this makes it possible for us to gain a better understanding of both
the task and the developed models, as we are not focusing only on
a single class label, but also consider the other types returned for
the query.

Our task is then summarised as follows:

• INPUT: a query q and an ontology O.1

• OUTPUT: a ranked list of types (t1, . . . , tn) where ti ∈ O.

• EVALUATION: each returned type ti is labeled with a score
(independently of tj , i 6= j) with respect to q. The individ-
ual type scores are aggregated, based on their position in the
ranked list, into a single score for the query.

1Our notion for an ontology here is simply taxonomic: a hierarchi-
cal categorisation of types (or classes) of entities.

4. EVALUATION METHODOLOGY
In this section we introduce the set collection we developed for

our task.

4.1 Queries
We collected queries from a number of recent benchmarking

evaluation efforts:

• 120 from the TREC Entity track (2009-2011); these focus
on specific relationships between entities (e.g., “Airlines that
currently use Boeing 747 planes”) [4].

• 55 from the INEX Entity Ranking track (2009) that seek a
list of entities (e.g., “US presidents since 1960”) [9].

• 142 from the Semantic Search Challenge (2010-2011) entity
search task, which refer to one particular entity, albeit often
an ambiguous one (e.g., “Ben Franklin,” which is both a per-
son and a ship) [7].

• 50 from the Semantic Search Challenge (2011) list search
task; these, again, target a group of entities that match certain
criteria (e.g., “Axis powers of World War II”) [7].

As seen from the examples above, these queries cover a broad range
of information needs related to entities and amount to a good num-
ber of queries to experiment with (a total of 367). Moreover, these
topic sets share a peculiarity with pragmatic importance: (a signifi-
cant portion of) known relevant answers come either from DBpedia
or can relatively easily be mapped to DBpedia. This could aid us in
the type annotation process, as we will explain next.

4.2 Target Type Annotation
Queries were labelled with types from the DBpedia ontology

(version 3.7). The ontology contains 358 categories (out of which
only 282 are actually used), organised into a hierarchy of 6 levels.
The root category element of all types (on the 0th level) is Thing;
this, we disregarded from the set of possible types, as it would have
no practical value for an actual application. There are 32 categories
on the first level of the hierarchy (including Person, Organisation,
Work, Species, etc.); we refer to these as top-level types.

Annotation was done manually by the two authors of the paper.
For each query we looked at the known relevant results (and the
topic narrative, where available) to clarify the intent. It is impor-
tant to emphasise that the target type was chosen with respect to
the query intent, not based on the qrels (which, occasionally, were
found to contain errors). The guiding principle was to pick a sin-
gle type that is as specific as possible, yet general enough to cover
all correct answers. This was possible in 67% of the cases. The
remainder of the queries could not be used for three main reasons:

• The query falls into multiple top-level categories and only
the root Thing class would be general enough to cover them
all. This was typically the case for many of the Semantic
Search Challenge queries that targeted one particular entity.
For example, “Ben Franklin” is a Person, but could also refer
to the ship (MeanOfTransportation) or the musical (Work).

• The type of entity targeted in the query cannot be mapped to
any class within the ontology. For example, the query “food
seed brands belonging to Monsanto” looks for brands; the
closest concept is Organisation, but it would be incorrect to
classify it as an such (or as any sub-class of it).

• In a few cases, it was not possible to decide (or agree on) the
query intent or it was not entity-related, e.g., “bookwork” or
“banana paper making.”



Table 1: Overview of query annotation.
Query type Count Percentage
Single target type 262 71.3%
Multiple (top-level) target types 30 8.2%
Target type missing from ontology 46 12.5%
Query not interpretable 29 7.9%
Total 367 100%
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Figure 1: Distribution of target types over the hierarchy.

Table 1 contains a summary.
Figure 1 displays the distribution of target types over the levels

of the hierarchy. Interestingly, for more than 70% of the queries the
target type lies beyond the top-level categories and can go as far as
4 levels deep.

4.3 Evaluation Metrics
We consider two types of evaluation: (i) strict, where judgments

are binary, crediting only the correct answer, and (ii) lenient, where
the relevance scores are graded and near-misses are also rewarded.

For strict evaluation we use mean reciprocal rank (MRR) and
success rate at the top rank (S@1). For lenient evaluation we mea-
sure the degree of misclassification, as opposed to merely measur-
ing correctness, by considering the distance between the returned
type (t) and the correct type (tq) in the hierarchy. We set the dis-
tance function d(t, tq) to be the number of steps between two types
in the hierarchy, if they lie on the same path (which is 0 if t = tq)
and to∞ otherwise. We then turn this distance function into a gain
measure G(t) by considering linear and exponential decay func-
tions. If d(t, tq) =∞ we take G(t) to be 0, otherwise:

• Linear: G(t) = 1 − d(t, tq)/h, where h is the depth of the
hierarchy (6 in our case).
• Exponential: G(t) = b−d(t,tq), where b is the base of the

exponent (which we set to 2).

This way the correct type has G(tq) = 1, more specific and more
general types on the same path are rewarded proportional to their
distance to the target type, and all other types get G(t) = 0. Using
the gain values defined above, we compute normalized discounted
cumulative gain (nDCG) at two rank cutoff points: 1 and 5.

5. BASELINES
Types have no direct textual representation, apart from their la-

bel. To be able to rank them with respect to their relevance to an
input query, we rely on entities from a knowledge base that are as-
sociated with the given type. A parallel can be drawn between this
task and that of ranking resources (collections) in a federated search
setting; each type can be considered as a collection of entities and
our target is to provide a relevance ranking of these collections (rep-
resenting types). Note that the same analogy can also be made to
other well-studied information retrieval tasks, namely expert find-
ing [2] and blog distillation [10, 22]. In all these cases, two prin-
cipal approaches are used: (1) representing types as a single “large

Table 2: Strict evaluation with binary judgments.
Top-level only Hierarchical

Model MRR S@1 MRR S@1 nDCG@1 nDCG@5
Type-centric 0.5275 0.3469 0.2987 0.1918 0.1918 0.3089
Entity-centric 0.6951 0.5020 0.3507 0.1633 0.1633 0.3967

document,” by concatenating all entity descriptors associated with
the type, and (2) treating entities as individual retrieval units and
aggregating their retrieval scores into a type-level ranking.

We assume that each entity e in the knowledge base has a textual
description, ed, and a set of types, et = (e1t , . . . , e

n
t ), associated

with it, where the types come from an ontology (ei
t ∈ O). Further,

it is assumed that if an entity is assigned to a given type t then it
is also assigned to all ancestors of t; for example, if an entity is
of type President, then it is also of types Politician and Person. In
principle, an entity could be assigned to types that are on different
paths within the hierarchy, but in practice that is rarely the case.

For each input query, consisting of a sequence of terms, q =
(w1, . . . , w|q|), and for each possible type in the ontology, t ∈ O,
we estimate the probability that the query was generated by the
given type, P (q|t), and rank types in decreasing order of this prob-
ability. Next, we formalise the two strategies discussed above using
language modeling techniques.

Type-centric model. For each type we build a single large doc-
ument by concatenating the descriptions of all entities that are la-
belled with that type. Once such a pseudo-document is generated
for each type, we can rank types much like documents. Following
the standard language modeling approach, we put:

P (q|t) =

|q|Y
i=1

P (wi|θt) =

|q|Y
i=1

((1− λ)P (wi|t) + λP (wi)), (1)

where θt is the type language model, computed as a mixture of
an empirical model, P (wi|t), and a background language model,
P (wi). The latter is a standard maximum-likelihood estimate; the
former is estimated by aggregating the term probabilities from all
entities of that type:

P (w|t) =
X

e:t∈et

P (w|ed)P (e|t), (2)

where P (w|ed) is the maximum likelihood estimate of term w in
the document representation of entity e; P (e|t) is the probability
of an entity given a type. For the sake of simplicity, we take this to
be uniform, i.e., P (e|t) = 1/|{e : t ∈ et}|.

Entity-centric model. Instead of creating a direct term-based
representation of types, our second approach models and queries
individual entities, then aggregates their relevance estimates:

P (q|t) =
X

e:t∈et

P (q|e)P (e|t). (3)

The probability of the query given the entity is estimated using a
standard query likelihood scoring for document language model-
ing: P (q|e) =

Q|q|
i=1 P (t|θed), where θed is a smoothed language

model of the entity description. As before, P (e|t) is set uniformly
across all entities labeled with t.

6. RESULTS AND ANALYSIS
As a first step, we perform strict evaluation, where the judgments

are binary and there is a single correct answer. Table 2 reports the
results in terms of mean reciprocal rank (MRR) and success rate



Table 3: Lenient evaluation rewarding near-misses.
Linear decay Exponential decay

Model nDCG@1 nDCG@5 nDCG@1 nDCG@5
Type-centric 0.3265 0.3440 0.2612 0.3287
Entity-centric 0.4143 0.4542 0.2939 0.4173

at rank 1 (S@1).2 In one set of experiments, we limit ourselves to
finding the top-level type for each query (columns 2–3). The results
show that even simple baselines can be successful in performing
this task with high accuracy. Then, we address the hierarchical ver-
sion of the type identification task. Not surprisingly, the numbers
are much lower here (columns 3–7). One interesting finding is that
the type-centric model can more often return the correct type at the
top rank (S@1) than the entity-centric approach, while in overall
the latter method is more effective.

Next, in Table 3, we present results for the lenient evaluation. We
test two ways of accounting for near-misses: linear decay (columns
2–3) and exponential decay (columns 4–5). The latter one is in-
creasingly less tolerant as the distance increases between the re-
turned type and the correct type; therefore, absolute values are
lower for this metric. The relative differences between the two
runs, however, are found to be stable for both metrics and cutoff
values. Compared to the strict case (Table 2), we observe substan-
tial improvements in terms of nDCG@1, while the improvements
for nDCG@5 are moderate. This indicates that the top ranked type
is often on the same path with the correct answer, however it is
not of the right granularity. When examining the types returned at
the level of individual queries, we observe some interesting differ-
ences between the two approaches. The type-centric model tends
to return more specific categories, whereas the entity-centric model
rather assigns more general types. This is is indeed the expected
behaviour, considering the strategies underlying these methods.

The numbers indicate that the entity-centric model is a clearly
preferred choice; this is also in line with findings on the resource
selection task in federated search. Our query-level observations,
however, suggest that the two approaches should be combined; one
possibility for future work would be to use a discriminative frame-
work that employs both entity-level and type-level features.

7. CONCLUSIONS
In this paper we introduced the task of hierarchical target type

identification for entity-oriented queries. We outlined the relevance
of the task to a range of IR problems, developed an evaluation
methodology and a test set based on a number of query sets used
in recent entity-oriented benchmarking initiatives. Building on ap-
proaches from resource selection in federated search, we proposed
two baseline approaches and performed an experimental evalua-
tion. Our main finding is that even simple baselines can perform
surprisingly well, when target types are limited to a flat list. The
hierarchical case, however, has proven to be more difficult. Our
analysis revealed that the top ranked type is often on the same path
with the correct answer, but it is not of the right granularity.

Throughout this paper we focused on queries for which a clearly
preferred target entity type was available. This was ensured through
a manual selection of queries. In future work we will investigate
automatic means of making this selection, i.e., deciding whether
the query has a clearly defined target type or not.

2Note that in case of a single relevant result S@1 is the same as
nDCG@1. Nevertheless, we included both to help comparing the
numbers in Tables 2 and 3.
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