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ABSTRACT
We present an extensible user simulation toolkit to facilitate auto-
matic evaluation of conversational recommender systems. It builds
on an established agenda-based approach and extends it with sev-
eral novel elements, including user satisfaction prediction, persona
and context modeling, and conditional natural language generation.
We showcase the toolkit with a pre-existing movie recommender
system and demonstrate its ability to simulate dialogues that mimic
real conversations, while requiring only a handful of manually
annotated dialogues as training data.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
Conversational recommender systems (CRSs) elicit user preferences
via multi-turn real-time interactions using natural language [6, 9].
There has been a great deal of progress in recent years on various
aspects, including question-based user preference elicitation [5,
10, 29], multi-turn conversational recommendation strategies [12],
and natural language understanding and generation [13, 27]. A
major challenges that remains, however, is evaluation [6]. Due to
the dynamic nature of interactions, measuring performance on
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the conversation level is not possible using offline test collections.
While online evaluation with users of a live service is an option,
it is expensive and does not scale. A promising solution to these
issues is user simulation [1, 6]. The idea there is to build a simulated
user that mimics how a real human would respond in a given
dialogue situation [19, 25]. Simulation thus offers a repeatable and
reproducible means of evaluation. (We note that it is not meant to
replace, but rather to complement human evaluation.)

There is indeed an emerging focus in recent research on using
simulation for evaluating conversational information access sys-
tems in general [1, 3, 17, 20, 23] and conversational recommenders
in particular [25, 26]. The current work aims to contribute to the de-
velopment of novel CRSs by recognizing the need for better tooling
for user simulation. In particular, we provide an extensible open-
source toolkit that is designed specifically for evaluation. Our work
is unique in at least three regards. First, it focuses on the task of
conversational recommendation and hence place a strong emphasis
on both the recommendation-specific conversation flow and on the
human-likeness of the generated user utterances. Second, it centers
around evaluation as opposed to other uses of simulation (most
commonly, synthetic data generation for reinforcement learning).
Third, it is designed to work with existing CRSs, without needing ac-
cess to source code or knowledge of their inner workings. It merely
requires collecting and annotating a small sample of dialogues.

Building on an established agenda-based simulator [25], we intro-
duce novel components, motivated by recent research [17, 23, 26],
for modeling user satisfaction, persona and context, and condi-
tional natural language generation. Given its modular design, the
toolkit can also be easily extended with other modeling options or
additional components. The toolkit is comprised of two Python li-
braries, which are made publicly available on GitHub: DialogueKit1
is a collection of generic and reusable dialogue components, and
UserSimCRS2 is an extensible user simulator built on top.

2 RELATEDWORK
While there are several efforts on simulation toolkits for recom-
mender systems [8, 11, 14, 16, 21], our work differs from those in
two major ways. First, we focus on the task of conversational recom-
mendations and hence place a strong emphasis on natural language
understanding and generation. Thus, unlike others that operate in

1https://github.com/iai-group/DialogueKit
2https://github.com/iai-group/UserSimCRS
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Figure 1: Conceptual overview of the user simulator. The parts in blue follow [25], while the yellow ones are novel additions.

the “intent space,” we operate in the “language space.” Second, our
objective is system evaluation, as opposed to training end-to-end
recommender systems using reinforcement learning (RL).

Our toolkit implements an agenda-based simulator [18], building
on and extending the approach in [25]. Alternatively, model-based
simulation could also be employed as it has been done recently for
task-based dialogue systems. Shi et al. [22] demonstrate how to
build model-based user simulators that rely on a simple Seq2seq di-
alogue system with copy and attention mechanisms, to facilitate RL-
based dialogue system training. ConvLab-2 [28] is an open-source
toolkit that enables researchers to build task-oriented dialogue sys-
tems, where user simulators are provided to support end-to-end
evaluation. These simulators can be assembled by equipping a neu-
ral network-based user policy with NLU and NLG components.
Tseng et al. [24] propose a learning framework for developing dia-
logue systems that perform joint optimization with an LSTM-based
user simulator, which consists of a dialoguemanager, an NLGmodel,
and a dialogue context encoder. The dialogue systems and user sim-
ulator models are pre-trained using supervised learning and then
fine-tuned using reinforcement learning based on the generated
dialogues. Importantly, such model-based approaches can also be
incorporated into our framework in the future.

3 CONCEPTUAL OVERVIEW
The goal of user simulation is to mimic how real users would re-
spond in given dialogue situation [19, 25]. Conceptually, our user
simulator follows the architecture of a typical task-based dialogue
system, which consists of natural language understanding, response
generation, and natural language generation components. Addi-
tionally, there is a dedicated user modeling component; see Fig. 1.
We opt for a modular design, as opposed to an end-to-end trainable
system, in order to have complete control over how responses are
generated and to allow for flexible extensions. Our work builds on
and extends the approach proposed in [25] as detailed below.

Natural language understanding (NLU) is responsible for
obtaining a structured representation of text utterances. Conven-
tionally, it entails intent classification and entity recognition. Addi-
tionally, motivated by recent research [17, 23], we also include a
classifier for user satisfaction prediction.3

Response generation is currently based on agenda-based simu-
lation [18], however, it could be replaced with other approaches in
the future. Following [25], response generation is based on an in-
teraction model, which is responsible for initializing the agenda and

3User satisfaction prediction is only used in the training stage to annotate dialogues.

updating it. Updates to the agenda can be summarized as follows:
if the agent responds in an expected manner, the interaction model
pulls the next action off the agenda; otherwise, it either repeats the
same action as the previous turn or samples a new action.

Usermodeling consists of three sub-components. The preference
model captures users’ likes and dislikes. Following [25], it is modeled
as a personal knowledge graph [2], where nodes correspond to items
and attributes. Novel to our work is the modeling of persona, which
can capture user-specific traits, e.g., patience or cooperativeness,
and context, which can characterize the situation of the user, e.g.,
temporal (time of the day and weekday vs. weekend), relational
(alone vs. group setting), or conversational (user satisfaction). We
focus on contextual aspects as these represent a so far unexplored
area of user modeling [9] and there is evidence suggesting that
language usage depends on persona and context [15, 23].

Natural language generation (NLG) is currently template-
based, that is, given the output of the response generation mod-
ule, a fitting textual response is chosen and may be instantiated
with preferences. Additionally, we extend the NLG such that it can
be conditioned on context. For example, user responses might be
shorter/longer depending on the time of the day or users could use
a stronger language when getting dissatisfied with the system.

4 SOFTWARE ARCHITECTURE
The toolkit is written in Python and is based on a modular archi-
tecture to support additional components, different models, and
custom features to be added in the future. There are two main li-
braries that are stacked on each other: DialogueKit provides basic
dialogue management functionalities, whileUserSimCRS contains
simulation-specific models and logic. See Fig. 2 for an overview of
the main packages and their dependencies. Both libraries are made
available in the Python Package Index (PyPI).

4.1 DialogueKit
DialogueKit models dialogue participants (users and agents), do-
mains (which define the types of slots for a particular application),
utterances, and annotations as base concepts. Utterances may be
annotated with intents and slot-value pairs. DialogueKit currently
supports two models for annotation, a cosine classifier for intents
and a minimal pipeline DIET classifier [4] for slot-value pairs.4 A
dialogue connector is included to orchestrate and store the conver-
sation between participants (human-human, human-machine, or

4The DIET classifier can be used for intent detection as well.
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Figure 2: Overview of the main packages (in yellow) with
some of the core modules highlighted (in white). Arrows
indicate intra-library dependencies (in blue) and inter-library
dependencies (in black).

machine-machine). Furthermore, the evaluation component pro-
vides functionality required to evaluate a set of conversations with
respect to standard metrics (such as AvgTurns and AvgSuccess).

4.2 UserSimCRS
The UserSimCRS library implements the simulation-specific compo-
nents in Fig. 1, specifically, response generation and user modeling.
During a conversation, any time the user is asked to provide pref-
erences, the preference model is consulted. Context is modeled in
a generic way such that it can capture, among others, temporal,
relational, and conversational factors. The generation of user utter-
ances may be conditioned on the user’s context and persona. Next,
we elaborate on how to use UserSimCRS for system evaluation.
Note that the library may also be used for training agents, but that
is outside the focus of the current paper.

5 SYSTEM EVALUATION USING SIMULATION
This section discusses how to employ simulation for evaluating an
existing CRS and illustrates this with a case study.

5.1 Methodology
The main objective of simulation-based evaluation in this work
is to establish a relative comparison between two systems. These
may be different variants of the same CRS or two different systems.
Importantly, the user simulator needs to target the differences that
we care about. For the sake of illustration, assume that there is
a baseline conversational movie recommender that understands
movie genres and an improved version that also recognizes plot
keywords. Having a user simulator that asks only for genres but not
for plot keywords will not capture the differences between these
two systems. Therefore, as a general principle, the user simulator
needs to be co-developed with the CRS and customized to mimic
the targeted user behavior.

5.2 Setting up Simulation
A unique feature of our toolkit is that it allows for the evaluation
of any existing CRS by treating it as a “black box.” That is, it does
not require access to the source code or assume knowledge of its
inner workings—it merely relies on observable behavior. Setting up
an existing CRS with our simulator involves the following steps:

(1) Prepare domain and item collection: A config file with
domain-specific slot names must be prepared for the prefer-
ence model. Additionally, a file containing the item collection
is required.

(2) Provide preference data: Preference data is consumed in the
form of item ratings (user ID, item ID, and rating triples).

(3) Dialogue sample: A small sample of dialogues with the CRS
needs to be collected. The sample size depends on the complex-
ity of the system, in terms of action space and language variety,
but is generally in the order of 5-50 dialogues.

(4) Define interaction model: A config file containing the space
of user and agent intents (i.e., possible actions), as well as the set
of expected agent responses for each user intent, is required for
the interaction model. The baseline (CRSv1) interaction model
shipped with the UserSimCRS library offers a starting point,
which may be further tailored according to the behavior and
capabilities of the given CRS.

(5) Annotate sample: The sample of dialogues must contain utter-
ance-level annotations in terms of intents and entities, as this
is required to train the NLU and NLG components. Note that
the slots used for annotation should be the same as the ones
defined in the domain file (cf. Step 1) and intents should follow
the ones defined in the interaction model (cf. Step 4.).

(6) Define user model/population: Simulation is seeded with
a user population that needs to be characterized, for example,
in terms of the different contexts (e.g., weekday vs. weekend,
alone vs. group setting) and personas (e.g., patient and impa-
tient users). Further, the number of users to be generated is to
be specified. Each user will have their own preference model,
which may be instantiated by grounding it in actual preferences
(i.e., the ratings dataset given in Step 2).

(7) Train simulator: The NLU, NLG, and response generation
components of the simulator are trained using the annotated
dialogue sample.

(8) Run simulation: Running the simulator will generate a set of
simulated conversations for each user with the CRS and save
those to files.

(9) Perform evaluation: Evaluation takes the set of simulated
dialogues generated in the previous step as input, and measures
the performance of the CRS in terms of the metrics implemented
in DialogueKit.

5.3 Case Study
To see our user simulator in action, we conducted a case study with
IAI MovieBot [7],5 which is an open-source conversational movie
recommender system. This required creating a connector agent in
DialogueKit, which can talk to IAI MovieBot via a RESTful API.
We followed the steps listed above to prepare the user simulator.
This included collecting a sample of 8 dialogues, configuring the
domain (with title, genre, and keyword as slots), and annotating
user and system utterances using intents (according to our CRSv1
interaction model) and slot-value pairs. As it can be seen from the
sample dialogue in Fig. 3, the simulator could successfully complete
dialogues with the CRS, mimicking the behavior of users observed
in the training data it was exposed to.
5https://github.com/iai-group/MovieBot

https://github.com/iai-group/MovieBot
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Figure 3: Sample dialogue between IAI MovieBot (Left, in
green) and the user simulator (Right, in blue).

6 CONCLUSION AND FUTURE DIRECTIONS
We have presented a user simulation toolkit, organized into two
Python libraries around general dialogue management and specific
user simulation functionality, to facilitate research on both conver-
sational recommender systems and simulation-based evaluation.
The toolkit is shipped with solid baseline models for each of the
components, a detailed set of instructions, and a working exam-
ple with an existing CRS, in order to make it easy for researchers
and developers to start conducting simulation-based experiments.
Future work is concerned with extending the components with ad-
ditional modeling options, including alternatives to agenda-based
simulation. We also plan to evaluate additional existing CRSs to
ensure that our framework generalizes to diverse systems.
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