
22

Query Modeling for Entity Search Based on Terms, Categories,
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Users often search for entities instead of documents, and in this setting, are willing to provide extra input, in
addition to a series of query terms, such as category information and example entities. We propose a general
probabilistic framework for entity search to evaluate and provide insights in the many ways of using these
types of input for query modeling. We focus on the use of category information and show the advantage of
a category-based representation over a term-based representation, and also demonstrate the effectiveness
of category-based expansion using example entities. Our best performing model shows very competitive
performance on the INEX-XER entity ranking and list completion tasks.
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1. INTRODUCTION

Users often search for specific entities such as people, products, or locations instead of
documents that merely mention them [de Vries et al. 2008; Mishne and de Rijke 2006].
Examples of information needs include “Countries where one can pay with the euro,”
“Impressionist art museums in The Netherlands,” or “Experts on authoring tools,”
where answers to be returned are countries, museums, or experts; not just articles
discussing them. In such scenarios, users may be assumed to be willing to express
their information need more elaborately than with a few keywords [Balog et al. 2008].
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These additional means may include categories to which the target entities should
belong or example entities. We focus on abstractions of these scenarios as they are
evaluated in the context of INEX, the INitiative for the Evaluation of XML retrieval.
In 2007, INEX launched an entity ranking track [de Vries et al. 2008], which also
ran in 2008 [Demartini et al. 2009]. Here, entities are represented by their Wikipedia
page, and queries asking for an entity are typed (that is, asking for entities belonging
to certain categories) and may come with examples. Two tasks are being considered
at INEX: (1) entity ranking, where query and target categories are given, and (2) list
completion, where textual query, example entities, and (optionally) target categories
are given.

Given that information needs involving entities can be formulated in so many ways,
with so many ingredients (textual query, categories, examples), the natural system
oriented question to ask is how to map these ingredients into the query component
of a retrieval model. In this article, we focus on effectively capturing and exploit-
ing category-based information. Several approaches to incorporating such information
have been proposed (see Section 2 below), but there is no systematic account of ap-
proaches yet. One of the contributions of the article is a comprehensive overview of
related work on this topic, entity retrieval in Wikipedia.

We introduce a probabilistic framework for entity retrieval that explicitly models
category information in a theoretically transparent manner. Information needs and
entities are represented as a tuple consisting of a term-based model plus a category-
based model, both characterized by probability distributions. Ranking of entities is
then based on similarity to the query, measured in terms of similarities between prob-
ability distributions. Our framework is capable of synthesizing all previous approaches
proposed for exploiting category information in the context of the INEX Entity Ranking
task. In this article, our focus is on two core steps: query modeling and query model
expansion.

We seek to answer the following research questions. First, does our two-component
query model improve over single component approaches, either term-based or category-
based? Second, what are effective ways of modeling (blind) relevance feedback in this
setting, using either or both of the term-based and category-based components?

Our main contribution in this paper is the introduction of a probabilistic retrieval
model for entity search, in which we are able to effectively integrate term-based and
category-based representations of queries and entities. We provide extensive evalua-
tions and analyses of our query models and approaches to query expansion. Category-
based feedback is found to be more beneficial than term-based feedback, and category-
based feedback using example entities brings in the biggest improvements, bigger than
combinations of blind feedback and information derived from example entities.

In Section 2 we discuss related work. We introduce our retrieval model in Section 3.
In Section 4 we zoom in on query modeling and query model expansion; Section 5 is
devoted to an experimental evaluation. We discuss and analyze our findings in Section 6
and conclude in Section 7.

2. RELATED WORK

We first describe previous work on query modeling, then review related work on entity-
oriented search tasks, and finally consider related work on entity ranking tasks in the
context of INEX.

2.1. Query Modeling

The main focus of this article—using information derived from terms, categories, and
examples for capturing the information need underlying a query—is a clear example
of query modeling, the process of representing a user’s query to best capture the
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underlying information need. As the information need is often expressed using very
few terms, query modeling tends to involve query expansion. In the language modeling
approach to document retrieval, relevance models have been particularly influential
examples of query expansion [Lavrenko and Croft 2001].

In the setting of semi-structured documents, query modeling has often been
aproached using mixtures of multiple sources of evidence, possibly biased through
the use of priors. For example, in web retrieval, anchor text and fielded queries, have
proved effective [Kraaij et al. 2002], as has the combination of query operations, fielded
queries, and fielded indexes [Mishne and de Rijke 2005; Metzler and Croft 2005]. In the
setting of XML retrieval, layout structure can make a significant difference [Kamps
et al. 2006]. Recent work has shown that automatically inferring structural information
from keyword queries and incorporating this into a query model may lead to significant
improvements [Kim et al. 2009].

Variations of query models, in the setting of standard document retrieval, include
alternative ways of estimating the revised query model [Tao and Zhai 2006], using
semantic information such as thesauri [Meij and de Rijke 2007] or ontologies [Järvelin
et al. 2001] to inform the query model or using so-called example documents that inform
the search engine about the type of document the user would like the search engine to
retrieve [Balog et al. 2008].

As described in the following subsections, much of the work on query modeling in the
setting of entity retrieval revolves around the use of category-based information. The
models that we consider in Section 4 gauge these proposals in a general probabilistic
framework.

2.2. Entity Retrieval

A range of commercial providers now support entity-oriented search, dealing with
a broad range of entity types: people, companies, services, and locations. Examples
include TextMap,1 ZoomInfo,2 Evri,3 and the Yahoo! correlator demo.4 They differ in
their data sources, in the entity types they support, functionality, and user interface.
Common to them, however, is their ability to rank entities with respect to a topic or
to another entity. Little is known, however, about the algorithms underlying these
applications.

Conrad and Utt [1994] introduce techniques for extracting entities and identifying
relationships between entities in large, free-text databases. The degree of association
between entities is based on the number of co-occurrences within a fixed window size. A
more general approach is also proposed, where all paragraphs containing a mention of
an entity are collapsed into a single pseudo document. Raghavan et al. [2004] re-state
this approach in a language modeling framework and use the contextual language
around entities to create a document-style representation, that is, entity language
model, for each entity. This representation is then used for a variety of tasks: fact-
based question answering, classification into predefined categories, and clustering and
selecting keywords to describe the relationship between similar entities.

Sayyadian et al. [2004] introduce the problem of finding missing information about
a real-world entity from text and structured data. Results show that entity retrieval
over text documents can be significantly aided by the availability of structured data.

The TREC Question Answering track recognized the importance of search focused on
entities with factoid questions and list questions (asking for entities that meet certain

1http://www.textmap.com/.
2http://www.zoominfo.com/.
3http://www.evri.com/.
4http://sandbox.yahoo.com/correlator.
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constraints) [Voorhees 2005]. To answer list questions, systems have to return instances
of the class of entities that match the description in the question. List questions are
often treated as (repeated) factoids, but special strategies are called for as answers may
need to be collected from multiple documents [Chu-Carroll et al. 2004]. Recognizing
the importance of list queries [Rose and Levinson 2004], Google Sets allows users to
enter some instances of a concept and retrieve others that closely match the examples
provided [GoogleSets 2009]. Ghahramani and Heller [2006] develop an algorithm for
completing a list based on examples using machine learning techniques.

The TREC 2005–2008 Enterprise track [Balog et al. 2009] featured an expert finding
task: given a topic, return a ranked list of experts on the topic. Lessons learned in-
volve models, algorithms, and evaluation methodology [Balog 2008; Balog et al. 2006].
Two important families of retrieval models for expert finding have emerged: candidate-
centric models that first compile a textual representation of candidate experts by ag-
gregating the documents associated with them and then rank these representations
with respect to the topic for which experts are being sought; and document-centric
models that start by ranking documents with respect to their relevance to the query
and then rank candidate experts depending on the strength of their association with
the top ranked documents. Many variations on these models have been examined, for
a range of expertise retrieval tasks, exploring such features as proximity [Balog et al.
2009; Petkova and Croft 2007], document priors [Zhu et al. 2009], expert-document as-
sociations [Balog and de Rijke 2008], and external evidence [Serdyukov and Hiemstra
2008]. While expert finding focuses on a single entity type (“person”) and a specific re-
lation (“being an expert in”), the proposed methods typically do not model the concept
of expertise; therefore, most of the approaches devised for expert finding can also be
applied to the more general task of entity search.

Zaragoza et al. [2007] consider the case of retrieving entities in Wikipedia where
instances are not necessarily represented by textual content other than their de-
scriptive label. In 2007, the INEX Entity Ranking track (INEX-XER) [de Vries et al.
2008; Demartini et al. 2009] introduced tasks where candidate items are restricted to
having their own Wikipedia page. Both Fissaha Adafre et al. [2007] and Vercoustre
et al. [2007] addressed an early version of these tasks (entity ranking and list com-
pletion), inspired by the 2006 INEX pilot; other early work on the topic is due to
Vercoustre et al. [2008].

2.3. Entity Ranking at INEX

Launched in 2002, INEX has been focused on the use of XML and other types of
document structure to improve retrieval effectiveness. While the initial focus was on
document and element retrieval, over the years, INEX has expanded to consider multi-
media tasks as well as various mining tasks. In recent years, INEX has mainly been
using Wikipedia as its document collection. An important lesson learned at INEX-XER
is that exploiting the rich structure of the collection (text plus category information,
associations between entities, and query-dependent link structure) may help improve
retrieval performance over plain document retrieval [de Vries et al. 2008].

Nearly all INEX participants have used category information; many of them
made this explicit in a separate category component in the overall ranking formula
[Vercoustre et al. 2008; Weerkamp et al. 2009; Zhu et al. 2008; Jiang et al. 2009; Kaptein
and Kamps 2009; Vercoustre et al. 2009]. A standard way of combining the category
and term-based components was to use a language modeling approach and to estimate
the probability of an entity given the query and category information [Jiang et al. 2009;
Weerkamp et al. 2009; Zhu et al. 2008]. Calculating the similarity between the cate-
gories of answer entities and the target categories or between the categories of answer
entities and the set of categories attached to example entities is sometimes based on
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lexical similarity [Vercoustre et al. 2008], on the content of categories (concatenating
all text that belongs to that category) [Kaptein and Kamps 2009], or on the overlap
ratio between sets of categories [Weerkamp et al. 2009]. Another popular solution was
to add categories as a separate metadata field to the content of documents and apply a
multi-field retrieval model (e.g., Zhu et al. [2008] and Demartini et al. [2008]).

Target category information provided as part of the query is not necessarily com-
plete, as the assignment to categories by human annotators is far from perfect. Some
teams have experimented with expanding the target categories, for example, using
the category structure to expand with categories up to a certain level [Jämsen et al.
2008; Weerkamp et al. 2009; Tsikrika et al. 2008]. Others expand the target categories
using lexical similarity between category labels and query terms [Vercoustre et al.
2008; Kaptein and Kamps 2009]. The categorization in Wikipedia is not a well-defined
“is-a” hierarchy; that is, members of a subcategory are not necessarily members of
its supercategory. To make up for this, Demartini et al. [2008] introduce a filtering
method that adds only subcategories which are of the same type, according to the
YAGO ontology [Suchanek et al. 2007]. Craswell et al. [2009] calculate a specificity
score to filter out categories that are too general. Mixed results are reported with re-
spect to the usefulness of category expansion: according to Thom et al. [2007], adding
sub-categories and parent categories does not improve performance. Zhu et al. [2008]
report that expanding the list of predefined categories with children and grandchil-
dren categories is helpful, while the inclusion of parent categories hurts performance.
Results in Demartini et al. [2008] show that expansion does not improve overall per-
formance, but minor improvements are observable in early precision. Finally, Jämsen
et al. [2008] report that expansion (using a different decay coefficient for the up and
down directions) improves and, moreover, that it works better for the list completion
task than for entity ranking; their explanation is that example entities provide a more
extensive and fine-grained set of target categories.

As to query formulation for entity retrieval, stemming and stopwording are usu-
ally performed. Craswell et al. [2009] go beyond this and modify the query with NLP
techniques, removing verbs while focussing on adjectives, nouns, and named entities;
Murugeshan and Mukherjee [2008] attempt to improve on query modeling by identify-
ing meaningful n-grams in the keyword query.

Several participants in the list completion task use the categories of example entities
for constructing or expanding the set of target categories, using various expansion
techniques [Craswell et al. 2009; Weerkamp et al. 2009; Jiang et al. 2009; Vercoustre
et al. 2008; Zhu et al. 2008; Jämsen et al. 2008]; some use category information to
expand the term-based model, see, for example, Weerkamp et al. [2009] and Kaptein
and Kamps [2009]. Similarly to Zhu et al. [2008] and Weerkamp et al. [2009], we use
example entities as explicit relevance feedback information, in Section 4.2.

There is a wide range of approaches looking for evidence in other documents, that
is, besides the Wikipedia page corresponding to the entity. Both Zhu et al. [2008] and
Jiang et al. [2009] employ a co-occurrence model, which takes into account the co-
occurrence of the entity and query terms (or example entities) in other documents,
by borrowing methods from the expert finding domain ([Zhu et al. 2006] and [Balog
et al. 2006], respectively). Many entity ranking approaches utilize the link structure
of Wikipedia, for example, as link priors [Kaptein and Kamps 2009] or using random
walks to model multi-step relevance propagation between linked entities [Tsikrika
et al. 2008]. Fissaha Adafre et al. [2007] use a co-citation based approach; indepen-
dently, Pehcevski et al. [2008] expand upon a co-citation approach and exploit link
co-occurrences to improve the effectiveness of entity ranking. Likewise, Kamps and
Koolen [2008] show that if link-based evidence is made sensitive to local contexts,
retrieval effectiveness can be improved significantly.
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Fig. 1. A general scheme for entity ranking. The steps on which we focus in this article are indicated with
grey arrows (Steps II and VI); all steps are explained in Section 3.1.

3. MODELING ENTITY RANKING

Now that we have reviewed related work, we are ready to present a general retrieval
scheme for two entity ranking tasks, as they have been formulated within the INEX
Entity Ranking track. In the entity ranking task, one is given a sequence of terms (Q)
and a set of target categories (C), and has to return entities. For the list completion
task we need to return entities given a sequence of query terms (Q), a set of target
categories (C), and a set of similar entities (E).5 For both tasks, we use q to denote
the query that consists of all of the “user input,” that is, q = {Q, C, E}, where only the
keyword part Q is compulsory.

3.1. A General Scheme for Entity Ranking

Figure 1 depicts our general scheme for ranking entities. The process goes as follows.
We are given the user’s input, consisting of a query (Q), a set of input categories
(C), and optionally a number of example entities (E). This input is translated into a
query model, with a term-based and/or a category-based component (Step II); in our
approach these components are characterized by probability distributions (denoted θT

q

and θC
q ). During retrieval this model is compared (in Step III) against models created

for indexed entities (that have been derived in Step I; we also represent entities in
terms of probability distributions, θT

e and θC
e ). In Step IV a ranked list of entities is

produced (based on Step III), which, in turn may (optionally) lead to a set of feedback
entities (Step V), either explicitly provided by the user or obtained “blindly” based
on the initial ranking. This feedback entity set (E) may (optionally) give rise to an
expanded query model (Step VI); from that point onwards, we can repeat Steps III, IV,
V, VI one or more times.

5Note that according to the original INEX-XER task definitions, list completion is the task of ranking entities
given the free text query (Q) and the set of example entities (E), while target categories (C) are optional.
Since our focus in this article is on modeling category information, we take example entities to be optional
and consider scenarios both with and without using this piece of input data.
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Our focus in this article is centered around the problem of modeling the query:
(1) How can the user’s input be translated into an initial query model (Step II)? And
(2) How can this often sparse representation be refined or extended to better express the
underlying information need (Step VI)? Specifically, we are interested in sources and
components that play a role in estimating the term- and category-based representations
of query models. Some entity ranking models may involve additional components or
steps for entity modeling (e.g., priors) or for ranking (e.g., links between entities);
this does not affect our general query modeling approach (Steps II and VI), and could
straightforwardly be incorporated into the ranking part (Steps I, III, and IV) of our
general framework, assuming that there are no dependencies on the query side that
would need to be considered.

Below, we follow the roadmap outlined just now; the reader may find it helpful to
return to Figure 1 and to the roadmap.

3.2. A Probabilistic Model for Entity Ranking (Steps III and IV)

We introduce a generative probabilistic framework that implements the entity ranking
approach depicted in Figure 1. We rank entities e according to their probability of being
relevant to a given information need (q): P(e|q). That is, the probability to sample e
from the model estimated by the query q. Instead of estimating this probability directly,
we apply Bayes’ rule and rewrite it:

P(e|q) ∝ P(q|e) · P(e), (1)

where P(e) is the prior probability of choosing a particular entity e, that we subse-
quently attempt to draw the query q from, with probability P(q|e). To remain focused,
we assume that P(e) is uniform, thus, does not affect the ranking.

Each entity is represented as a pair: e = (θT
e , θC

e ), where θT
e is a probability distribu-

tion over terms, and θC
e is a probability distribution over categories. Similarly, the query

is also represented as a pair: q = (θT
q , θC

q ), which is then optionally further refined, re-
sulting in an expanded query model q̃ = (θ̃T

q , θ̃C
q ) that is used for ranking entities. In

the remainder of this section, equations are provided for q; the very same methods are
used for ranking using the expanded query: q̃ simply needs to be substituted for q.

The probability of an entity generating the query is estimated using a mixture model:

P(q|e) = λ · P
(
θT

q |θT
e

) + (1 − λ) · P
(
θC

q |θC
e

)
, (2)

where λ controls the interpolation between the term-based and category-based repre-
sentations. The estimation of P(θT

q |θT
e ) and P(θC

q |θC
e ) requires a measure of the differ-

ence between the query and entity models, both represented by (empirical) probability
distributions. Here, we opt for the Kullback-Leibler (KL) divergence; before we delve
into the specifics, we discuss the motivation behind this choice.

A straightforward way of estimating the probability P(θT
q |θT

e ) (or P(θC
q |θC

e )) would be
to take the product of the individual term (category) probabilities in the entity model,
raised to the power of their probability in the query model; formally, for the term-based
case:

P
(
θT

q |θT
e

) =
∏
t∈θT

q

P
(
t|θT

e

)P(t|θT
q )

. (3)

There are two pragmatic problems with computing this probability directly. First, the
multiplication of very small probabilities would result in a floating-point underflow; a
solution for dealing with that is to move computations to the log domain (where, subse-
quently, multiplications become additions), and calculate log P(θT

q |θT
e ) (log P(θC

q |θC
e ));
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Original
Transformed

Original
Transformed

P (θTq |θTe ) P (θCq |θCe )

Fig. 2. Distributions of probabilities averaged over all queries in our test sets; (left): term-based, (right):
category-based similarity. Original refers to the direct calculation of the probabilities (that is, Eq. (3) for the
term-based case); transformed is based on KL-divergence (that is, Eq. (5) for the term-based case).

note that the exponential function of this expression needs to be taken, before com-
bining the term- and category-based components (according to Eq. (2)). This leads us
to the second issue; looking at the distributions of these probabilities averaged over
all queries in our test sets (Figure 2, dashed lines), we find that they are skewed to
the left. Moreover, the shapes of the term-based and category-based components are
quite different; a better empirical performance can be achieved by making these dis-
tributions symmetrical using log transformed ratios (Figure 2, solid lines). Note that
this transformation does not make a difference in the ranking generated by a single
component (either term- or category-based), but it has a positive effect when the two
need to be combined.

We, therefore, use KL divergence scores, instead of calculating the probabilities
“directly” (as formulated in Eq. (3)), and estimate term-based similarity

KL
(
θT

q ||θT
e

) =
∑

t

P
(
t|θT

q

) · log
P

(
t|θT

q

)
P

(
t|θT

e

) , (4)

where the probability of term t given the term-based model of entity e, P(t|θT
e ) and

given the term-based model of query q, P(t|θT
q ), remain to be defined. To ensure that

KL divergence is always well-defined, we require P(t|θT
e ) > 0 for any term t such that

P(t|θT
q ) > 0; this is ensured by smoothing the entity model (see Section 3.3). Moreover,

if the quantity 0 · log 0 appears in the formula, it is interpreted as zero. (Note that
calculating KL(θT

q ||θT
e ) this way differs from log P(θT

q |θT
e ) only in a query-dependent

constant.) Since KL divergence is a score (which is lower when two distributions are
more similar), we turn it into a probability using Eq. (5):

P
(
θT

q |θT
e

) = zT · (
max KL

(
θT

q || · ) − KL
(
θT

q ||θT
e

))
, (5)

where zT is a normalization factor set as follows:

zT = 1
/ ∑

e

max
(
KL

(
θT

q || · ) − KL
(
θT

q ||θT
e

))
. (6)

The category-based component of the mixture in Eq. (2) is calculated analogously to
the term-based case:

P
(
θC

q |θC
e

) = zC · (
max KL

(
θC

q || · ) − KL
(
θC

q ||θC
e

))
, (7)
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where

zC = 1
/ ∑

e

max
(
KL

(
θC

q || · ) − KL
(
θC

q ||θC
e

))
, (8)

and

KL
(
θC

q ||θC
e

) =
∑

c

P
(
c|θC

q

) · log
P

(
c|θC

q

)
P

(
c|θC

e

) . (9)

The probability of a category according to an entity’s category model (P(c|θC
e )) and the

probability of a category according to the query’s category model (P(c|θC
q )) remain to

be defined. Again, we require P(c|θC
e ) > 0 for any category c that might appear in the

query’s category model.

3.3. Entity Modeling (Step I)

We have just completed Steps III and IV. Following the roadmap provided at the end
of Section 3.1, our next task is to describe the entity model component, that is, Step I.
Steps II and VI are discussed in the next section.

3.3.1. Term-Based Representation. To estimate P(t|θT
e ) we smooth the empirical en-

tity model with the background collection to prevent zero probabilities. We employ
Bayesian smoothing using Dirichlet priors which has been shown to achieve superior
performance on a variety of tasks and collections [Zhai and Lafferty 2004; Losada and
Azzopardi 2008] and set

P
(
t|θT

e

) = n(t, e) + μT · P(t)∑
t n(t, e) + μT , (10)

where n(t, e) denotes the number of times term t occurs in the document represent-
ing entity e,

∑
t n(t, e) is the total number of term occurrences, that is, the document

length, P(t) is the background model (the relative frequency of t in the collection), and
μT is the smoothing parameter. Since entities correspond to Wikipedia articles, this
representation of an entity is identical to constructing a smoothed document model for
each Wikipedia page in a standard language modeling approach [Song and Croft 1999;
Lafferty and Zhai 2001]. Alternatively, the entity model can be expanded with terms
from related entities, that is, entities sharing the categories or entities linking to or
from the Wikipedia page [Fissaha Adafre et al. 2007]. To remain focused, we do not
explore this direction here.

3.3.2. Category-Based Representation. Category assignments in Wikipedia are neither
consistent nor complete. This makes it impractical to make a binary decision between
matching and non-matching categories, that is, simply filtering on the target categories
is not sufficient. Analogously to the term-based case, to define the category-based
representation of an entity e (θC

e ), we smooth the maximum-likelihood estimate with a
background model. We employ Dirichlet smoothing, based on the following intuition:
entities with a richer category-based representation require less smoothing. Thus,
the amount of smoothing applied is dynamically adjusted, depending on how many
categories an entity is assigned to. We use the parameter μC to avoid confusion with
μT :

P
(
c|θC

e

) = n(c, e) + μC · P(c)∑
c n(c, e) + μC . (11)

In Eq. (11), n(c, e) is 1 if entity e is assigned to category c, and 0 otherwise;
∑

c n(c, e) is
the total number of categories e is assigned to; P(c) is the background category model
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Fig. 3. Query models without expansion; Q stands for the term-based component of the topic, E for example
entities, and C for the target categories; solid arrows from input to query model indicate that the input is
used to create the model; dashed arrows indicate a comparison between models; acronyms function as labels
for our models; acronyms and models are explained in Section 4.1.

and is set using a maximum-likelihood estimate:

P(c) =
∑

e n(c, e)∑
c
∑

e n(c, e)
, (12)

where
∑

c
∑

e n(c, e) is the number of entity-category assignments in the collection.
We leave the exploration of other smoothing methods and a sensitivity analysis with

respect to smoothing parameters as future work.

4. ESTIMATING AND EXPANDING QUERY MODELS

In this section we introduce methods for estimating and expanding query models: Steps
II and VI in Figure 1; confer also the roadmap described at the end of Section 3.1. In
particular, this means constructing the initial query model (θq) and the expanded query
model (θ̃q); this, in turn, means estimating the probabilities P(t|θT

q ), P(c|θC
q ), P(t|θ̃T

q ),
and P(c|θ̃C

q ) as listed in Figure 1 and discussed in Section 3.

4.1. Query Models (Step II)

We define a series of seven query models, M1–M7, each consisting of a term-based
component and/or a category-based component; graphical depictions of the models are
given in Figure 3. Our naming convention is as follows. A query model is denoted
using an expression of the form qT-X+qC-Y, where the first half (qT-X) denotes the
term-based component of the query model with various options detailed in the X-part,
and the second half (qC-Y) denotes the category-based component with various options
denoted by Y; for query models that lack a category-based component we omit the
corresponding term qC-Y. While this section details the seven query models, Section 4.2
describes expansions of those query models.

(M1) qT-Q. This query model only has a term-based component and uses no cate-
gory information (that is, it amounts to standard language modeling for document
retrieval [Zhai and Lafferty 2004]). Writing n(t, Q) for the number of times term t is
present in query Q, we define the baseline term-based query to be

Pbl
(
t|θT

q

) = n(t, Q)∑
t n(t, Q)

. (13)
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(M2) qT-QC. This model, previously described in Craswell et al. [2009], makes use
of the possibility to expand the keyword query with terms derived from the names
(labels) of input categories to form a term-based query model

Pct
(
t|θT

q

) =
∑

c∈C n(t, c)∑
c∈C

∑
t n(t, c)

, (14)

where n(t, c) denotes the number of times t occurs in the name of category c.
By using categories in this way, we remain in the term-based component of the query
model; for the sake of simplicity we combine original terms and terms from category
names with equal weight (by setting the mixture weight αT to 0.5):

P
(
t|θT

q

) = (1 − αT ) · Pbl
(
t|θT

q

) + αT · Pct
(
t|θT

q

)
. (15)

(M3) qT-Q+qC-Q. From this point onwards, we distinguish categories from text in
the query model; this is possible even if categories are not provided explicitly by the
user. Our third model uses the keyword query (Q) to infer the category-component
of the query model (θC

q ), by considering the top Nc most relevant categories given the
query. Relevance of a category is estimated based on matching between the name of
the category and the query, that is, a standard language modeling approach on top of
an index of category names, where P(Q|c) is the probability of category c generating
query Q:

Pq
(
c|θC

q

) =
{

P(Q|c)/
∑

c∈Nc
P(Q|c), if c ∈ top Nc

0, otherwise.
(16)

For the term-based query component, we use the baseline model (that is, set θT
q

using Eq. (13)). The idea of using the keyword query to find relevant categories was
first proposed in Thom et al. [2007] and was also used at INEX (e.g., [Vercoustre
et al. 2008]).
(M4) qT-Q+qC-C. This model, previously described in Weerkamp et al. [2009], also
employs a baseline term-based query component (that is, setting θT

q according to
Eq. (13)), but it uses the input categories to form a category-based query model.
Setting n(c, q) to 1 if c is a target category, and

∑
c n(c, q) to the total number of

target categories provided with the topic statement, we put

Pbl
(
c|θC

q

) = n(c, q)∑
c n(c, q)

. (17)

This, in a sense, is the baseline “two-component” model; it uses the keyword query
to form the term-based representation and the input categories to set the category-
based representation of the query; both are maximum likelihood estimates.
(M5) qT-Q+qC-QC. Since input category information may be very sparse, it makes
sense to enrich this component of the query by considering other categories that
are relevant to the keyword query. This model uses a baseline term-based query
component (Eq. (13)), and employs the mixture model on the category side:

P
(
c|θC

q

) = (1 − αC) · Pbl
(
c|θC

q

) + αC · Pq
(
c|θC

q

)
. (18)

Again, to keep things simple we allocate the probability mass equally between the
two components (by setting the mixture weight αC to 0.5).
(M6) qT-QC+qC-C. This model combines qT-Q+qC-C with names of input categories
added to (M1) (qT-Q); the names contribute half of the probability mass to the term-
based query model (αT = 0.5). The components P(t|θT

q ) and P(c|θC
q ) are estimated
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as in Eq. (15) and (17), respectively.

P
(
t|θT

q

) = (1 − αT ) · Pbl
(
t|θT

q

) + αT · Pct
(
t|θT

q

)
,

P
(
c|θC

q

) = Pbl
(
c|θC

q

)
.

(M7) qT-QC+qC-QC. This model combines (M5) (qT-Q+qC-QC) and (M6) (qT-
QC+qC-C); input category labels are added to the term-based query model and
query terms are used to add relevant categories to the category-based model. For
the components P(t|θT

q ) and P(c|θC
q ), Eq. (15) and (18) are used, respectively. Again

we allocate probability mass by setting αT = 0.5 and αC = 0.5.

P
(
t|θT

q

) = (1 − αT ) · Pbl
(
t|θT

q

) + αT · Pct
(
t|θT

q

)
,

P
(
c|θC

q

) = (1 − αC) · Pbl
(
c|θC

q

) + αC · Pq
(
c|θC

q

)
.

4.2. Expanded Query Models (Step VI)

Expansions of a basic query model can take place on either (or both) of the two com-
ponents: term-based and category-based. The general form we use for expansion is a
mixture of the baselines defined in Section 4.1 (subscripted with bl) and an expansion
(subscripted with ex). For the term-based component we set

P
(
t|θ̃T

q

) = (1 − λT ) · Pbl
(
t|θT

q

) + λT · Pex
(
t|θT

q

)
, (19)

and for the category-based component we set

P
(
c|θ̃C

q

) = (1 − λC) · Pbl
(
c|θC

q

) + λC · Pex
(
c|θC

q

)
, (20)

where λT and λC are the weights on the expanded query models in Equations (19) and
(20), respectively.

We present a general method for estimating the expansions Pex(t|θT
q ) and Pex(c|θC

q ),
using a set of feedback entities, FB . This feedback set may be obtained by taking the
top N relevant entities according to a ranking obtained using the initial query. We use
E′ to denote this set of blind feedback entities. Alternatively, one might assume explicit
feedback, such as the example entities (denoted by E) in our scenario. Constructing the
feedback set by using either blind feedback (FB = E′), example entities (FB = E), or a
combination of both (FB = E′ ∪ E), yields three query expansion methods. Depending
on where feedback takes place we have nine variations in total, as shown in Figure 4.
Next, we define our methods for constructing the expanded query models from a set of
feedback entities.

A word on notation: we use variations on the schema qT-FB+qC-FB ′ to denote ex-
panded query models; here, the term-based or category-based component may be miss-
ing and FB and FB ′ are (possibly empty) sets of feedback entities.

4.2.1. Term-Based Expansion. Given a set of feedback entities FB , the expanded query
model is constructed as

P
(
t|θ̃T

q

) = PKT (t|FB )∑
t′ PKT (t′|FB )

, (21)

where t′ stands for a term, and PKT (t|FB ) denotes the top KT terms with the highest
P(t|FB ) value, calculated according to Eq. (22):

P(t|FB ) = 1
|FB|

∑
e∈FB

n(t, e)∑
t n(t, e)

, (22)
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Fig. 4. Models with expansion; same graphical and notational conventions as in Figure 3; acronyms
explained in Section 4.2.

where
∑

t n(t, e) is the total number of terms, that is, the length of the document
corresponding to entity e.

The approach we propose is adopted from Balog et al. [2008], where query models
are estimated from example documents; a simplification we make is that all feedback
documents are assumed to be equally important. A fundamental difference between
this approach and relevance models by Lavrenko and Croft [2001] is that relevance
models assume conditional dependence between the query and the terms selected for
expansion. Following Balog et al. [2008], we lift this assumption as we want to avoid
biasing the expansion term selection towards the query (and thereby possibly loosing
important aspects, not covered by the original keyword query).

4.2.2. Category-Based Expansion. Analogously to the term-based case, we calculate the
expanded query model for categories

P
(
c|θ̃C

q

) = PKC (c|FB )∑
c′ PKC (c′|FB )

, (23)

where c′ stands for a category, and PKC (c|FB ) denotes the top KC categories with the
highest P(c|FB ) value, calculated according to Eq. (24), (where, as before, n(c, e) is 1 if
e belongs to c):

P(c|FB ) = 1
|FB |

∑
e∈FB

n(c, e)∑
t n(c, e)

. (24)

5. EXPERIMENTAL EVALUATION

In order to answer the research questions listed in Section 1, we run a set of exper-
iments. Next we detail our experimental setup, present the results, and formulate
answers.

5.1. Experimental Setup

5.1.1. Test Collection. We use the test sets of the 2007 and 2008 editions of the INEX
Entity Ranking track (INEX-XER) [de Vries et al. 2008; Demartini et al. 2009], that
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Table I. Results on the Entity Ranking Task, No Expansion. Best Results per Test Set in Boldface

XER2007 XER2008
Model λ θT

q θC
q MAP MRR xinfAP MRR

(M1) qT-Q 1.0 Eq. 13 — 0.1798 0.2906 0.1348 0.2543
(M2) qT-QC 1.0 Eq. 15 — 0.1706 0.3029 0.1259 0.2931
(M3) qT-Q+qC-Q 0.5 Eq. 13 Eq. 16 0.2410 0.3830 0.1977 0.3190
(M4) qT-Q+qC-C 0.5 Eq. 13 Eq. 17 0.2162 0.4168 0.3099 0.4783
(M5) qT-Q+qC-QC 0.5 Eq. 13 Eq. 18 0.2554 0.4531 0.3124 0.5024
(M6) qT-QC+qC-C 0.5 Eq. 15 Eq. 17 0.1881 0.2948 0.2911 0.4439
(M7) qT-QC+qC-QC 0.5 Eq. 15 Eq. 18 0.2255 0.3346 0.2950 0.4357

use (a dump of) the English Wikipedia as document collection from which (articles
corresponding to) entities are to be returned. The collection consists of over 650,000
documents plus a hierarchy of (over 115,000) categories; this is not a strict hierarchy,
but a graph. Wikipedia articles are labeled with categories, but these assignments are
not always consistent and far from complete [de Vries et al. 2008].

Tasks. INEX-XER has two tasks: entity ranking and list completion. An entity rank-
ing topic specifies a free-text query Q and target categories C. In the (original) list
completion task, the topic statement consists of a free-text query Q and examples enti-
ties E, without knowledge of C; the task is to complete the lists of entities. As our focus
in this article is on using categories, we consider a variation of the list completion task
where this information (C) is always provided by the user.

5.1.2. Topics and Judgments. Two sets of topics are available for INEX-XER. For 2007 a
test set (XER2007) of 46 topics was created for the entity ranking track, 25 of which were
specifically developed and assessed by track participants. On average, pools contained
about 500 entities per topic [de Vries et al. 2008]. For 2008, a test set (XER2008)
was compiled that contains 35 topics, developed and assessed by track participants
[de Vries et al. 2008]. The metrics we use are Mean Average Precision (MAP) and Mean
Reciprocal Rank (MRR) for the XER2007 topic set. For XER2008, xinfAP replaces MAP
[Yilmaz et al. 2008] as it is a better estimate of Average Precision (AP) in the case of
incomplete assessments [Demartini et al. 2009].

5.1.3. Parameter Settings. Our models involve a number of parameters. In this section
we apply baseline settings for these parameters, and we use the values for all models.
Specifically, we use the average document length for the term-smoothing parameter
(μT = 411) and the average number of categories assigned to an entity for the category-
based smoothing parameter (μC = 2.2). Our mixture models involve two components
to which we assign equal importance, that is, λ = λT = λC = 0.5. In Section 6.2 we
investigate the sensitivity of our models with respect to these parameters.

5.2. The Performance of Our Query Models

We examine the effectiveness of our query models and, in particular, of the use of two
components—for terms and categories—on the entity ranking task. In the experiments
that involve the keyword query in the construction of the category-component of the
query model, we consider the top 10 categories relevant to the query, that is, set Nc = 10
(see Eq. (16)). Table I lists the results for the query models defined in Section 4.1,
using the default parameter settings detailed in Section 5.1. In Section 6 we report on
optimized runs and compare them against the best scores obtained at INEX-XER.

We compare the performance of the models using a two-tailed t-test at a signifi-
cance level of p = 0.05. In Table I, we see that simply flattening the target category
information and adding category names as terms to the term component is not an ef-
fective strategy; see (M1) vs. (M2), (M4) vs. (M6), and (M5) vs. (M7). When we consider
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Table II. Results on the Entity Ranking and List Completion Tasks, with Expansion

XER2007 XER2008
Model FB θ̃T

q θ̃C
q MAP MRR xinfAP MRR

Entity ranking (blind feedback only)
BASELINE (no expansion) 0.2554 0.4531 0.3124 0.5024
qT-E’ {E′} Eq. 21 — 0.2511 0.3654� 0.3214 0.4694
qC-E’ {E′} — Eq. 23 0.2601 0.4516 0.3315� 0.5042
qT-E’+qC-E’ {E′} Eq. 21 Eq. 23 0.2541 0.4090 0.3365� 0.4984
List completion (blind feedback and/or examples)
BASELINE (no expansion) 0.2202 0.4042 0.2729 0.4339
Blind feedback
qT-E’ {E′} Eq. 21 — 0.2138 0.3235� 0.2814 0.4139
qC-E’ {E′} — Eq. 23 0.2258 0.3858 0.2968� 0.4777
qT-E’+qC-E’ {E′} Eq. 21 Eq. 23 0.2197 0.3576 0.3017� 0.4768
Examples
qT-E {E} Eq. 21 — 0.2376� 0.3875 0.2886 0.4274
qC-E {E} — Eq. 23 0.3141� 0.5380� 0.3873� 0.6123�
qT-E+qC-E {E} Eq. 21 Eq. 23 0.3267� 0.5357� 0.3926� 0.6353�
Blind feedback plus examples
qT-E’E {E′, E} Eq. 21 — 0.2200 0.3193� 0.2843 0.4036
qC-E’E {E′, E} — Eq. 23 0.2565� 0.4416 0.3286� 0.4999
qT-E’E+qC-E’E {E′, E} Eq. 21 Eq. 23 0.2475� 0.3854 0.3315� 0.4678

Best results in boldface. Baseline corresponds to model (M5) in Table I. Significant differences with baseline
denoted with � and � .

category-based information provided with the input query as a separate component,
we do see improvements across the test sets: see (M1) vs. (M3) (significant for 2007 and
2008) and (M2) vs. (M6) (significant for 2008). As to the category-component, the switch
from using only the keyword query for its construction to using target categories (C)
defined explicitly by the user ((M3) vs. (M4)) does not lead to consistent improvements
(although the improvement is significant on the 2008 set); the move from the latter to
a combination of both ((M4) vs. (M5) (significant on the 2007 set) and (M6) vs. (M7))
leads to consistent improvements for all tasks and measures.

5.3. The Performance of Our Expanded Query Models

Next, we report on the effectiveness of the expansion models depicted in Figure 4. A
quick note before we start: when we only use Q and C, results are evaluated on the
entity ranking task. When E is also used we evaluate results on the list completion
task. Some notation: E′ denotes a pseudo-relevant set of entities, that is, the top N
obtained using methods of the previous subsection; and E denotes a set of example
entities. When we use example entities for expansion, we need to remove them from
the runs, that is, use the list completion relevance judgments. In order to have a fair
comparison between approaches reported in this subsection, we need to do that for
the pseudo-feedback runs as well, that is, when we only use E′. We use the following
settings.

—Number of feedback entities (N): 5.
—Number of feedback categories (KC): 10.
—Number of feedback terms (KT ): 15.
—Default values for λ, λT , and λC : 0.5.

Table II presents the results of query expansion, applied on top of the best performing
run from the previous subsection (M5). We find that category-based feedback always
outperforms term-based feedback. In case of blind feedback, category-based expansion
brings in improvements (significant for 2008, MAP), while term-based expansion
mostly hurts (significantly so on 2007, MRR). Example-based feedback leads to
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Table III. Description of the Topics Highlighted in the Topic-Level Analysis

ID Query Part Category Part
#30 Space history astronaut cosmonaut engineer astronauts
#31 Film starring Steven Seagal (movies), (films)
#45 Dutch artists paris Dutch painters
#64 Alan Moore graphic novels adapted to film graphic novels
#79 Works by Charles Rennie Mackintosh buildings and structures
#91 Paul Auster novels novels

#132 Living nordic classical composers (21st century classical composers), (living classi-
cal composers), (Finnish composers)

#141 Universities in Catalunya Catalan universities
#144 Chess world champions (chess grandmasters), (world chess champions)

improvements for both term-based and category-based expansion, but the latter is
far more substantial; relative improvements can be up to +42% in MAP (2007 and
2008 topics) and +41% in MRR (2008 topics). The combination of blind feedback
and examples improves over blind feedback, but is outperformed by category-based
feedback using examples. An interesting observation is that the combination of
category-based and term-based feedback is shown to not perform considerably better
(in any of the settings) than category-based feedback alone.

6. DISCUSSION

In this section we analyze the experimental results obtained in Section 5. We start with
a topic-level analysis and follow with an analysis of the sensitivity of our models to
their parameters. Finally, we compare the performance of our approaches to published
results obtained with similar methods.

6.1. Topic-Level Analysis

In this section we analyze the performance of our query models by offering a topic-level
analysis, contrasting the performance of models on a topic-by-topic basis. Table III lists
the topics highlighted in the analysis. We refer to the topic components as follows: to
the topic ID as #N, to the query part as #NQ, and the category part as #NC . For our
comparisons, we focus on Average Precision (AP) scores and use the �AP notation to
denote changes.

6.1.1. Query Models. We compare the addition of a number of features to our query
models. We only consider models without feedback and use the numbering introduced
in Table I to refer to our models (e.g., (M1), (M2), . . . ).

Flattening category information. Figure 5 shows the difference in AP per topic be-
tween query models that include the category labels to the query in the term-based
component ((M2), (M6) and (M7)) and models that do not ((M1), (M4) and (M5)). We see
that for (M1) vs. (M2), roughly as many topics are helped as hurt by including category
labels in the term-based component; for (M4) vs. (M6) and (M5) vs. (M7), more topics
are hurt than helped when category information is added to the term-based component.

We take a closer look at topic #31 (XER2007) for which scores decrease most in all
comparisons. Table IV shows the top 10 results returned for each model, with relevant
entities indicated in bold. We observe that some non-relevant entities are only returned
for models (M2), (M6), and (M7) (e.g., “Action movie” and “Indiana Jones 4”). These non-
relevant entities are returned because of the category information; the category labels
(#31C) are terms associated with movies in general. Adding them shifts the model from
a specific type of movie (that is, #31Q) to any type of movie. This example illustrates
how general categories disrupt this type of modeling strategy.
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Table IV. The Top 10 Ranked Entities for Topic #31 (XER2007)

rank (M1) qT-Q (M4) qT-Q+qC-C (M5) qT-Q+qC-QC
1 Steven Seagal Rock-A-Doodle Shadows of the Past
2 Martial arts film Shadows of the Past Martial arts film
3 On Deadly Ground Martial arts film On Deadly Ground
4 Shadows of the Past On Deadly Ground Submerged
5 Under Siege Submerged Out for Justice
6 Fire Down Below Out for Justice Under Siege
7 List of films set in Japan Under Siege Steven Seagal
8 Submerged Steven Seagal The Glimmer Man
9 Out for Justice The Glimmer Man Hard to Kill

10 Into the Sun (film) Hard to Kill Fire Down Below
rank (M2) qT-QC (M6) qT-QC+qC-C (M7) qT-QC+qC-QC

1 Steven Seagal Rock-A-Doodle Rock-A-Doodle
2 Martial arts film Martial arts film Martial arts film
3 Action movie Shadows of the Past Shadows of the Past
4 The Patriot Action movie Action movie
5 On Deadly Ground On Deadly Ground On Deadly Ground
6 Shadows of the Past History of science fiction films The Sugarland Express
7 Fire Down Below Above the Law (film) History of science fiction films
8 Above the Law (film) Submerged Poltergeist film series
9 Jean Claude Van Damme Sex in film Indiana Jones 4

10 Katherine Heigl Cult film Above the Law (film)

Boldface indicates relevant entities.
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Fig. 5. Flattening the target category information and adding category names as terms to the term-based
query component: (left): (M1) = Baseline vs. (M2); (center): (M4) = Baseline vs. (M6); (right): (M5) = Baseline
vs. (M7) for the XER2007 (top) and XER2008 data sets (bottom).

Combination with the category component. Figure 6 shows the per topic differences
in AP between query models that only use the term-based component ((M1) and
(M3)) and models that combine the term-based component with the category-based
component ((M2) and (M6)). For XER2008 (bottom) the MAP score increases when the
components are combined. MAP also improves on the XER2007 topics (top), although
AP scores of some topics show a sharp decrease, for example, topic #79. We take a
closer look at this topic.

Table V shows the top 10 entities for each model. (M3) only finds a single relevant
entity and (M6) finds none: both models demonstrate a shift in topic. (M6) finds any
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Table V. The Top 10 Ranked Entities for Topic #79 (XER2007)

rank (M1) qT-Q (M2) qT-QC
1 Charles Rennie Mackintosh Charles Rennie Mackintosh
2 Queen’s Cross Church Liverpool Cathedral
3 Hunterian Museum and Art Gallery Architecture of the United Kingdom
4 Glasgow School of Art Hunterian Museum and Art Gallery
5 78 Derngate 1928 in architecture
6 Margaret MacDonald (Artist) International style (architecture)
7 Liverpool Cathedral Queen’s Cross Church
8 Glasgow School Glasgow School of Art
9 Charles Macintosh Modern architecture

10 Design classic Josef Hoffmann
rank (M3) qT-Q+qC-Q (M6) qT-QC+qC-C

1 Tiu Keng Leng World’s largest buildings
2 Design classic Pavilion (structure)
3 Queen’s Cross Church Rafter
4 Architecture of the United Kingdom Rotunda (architecture)
5 Jeremy Broun Charnel house
6 Walberswick Yard (land)
7 Bellahouston Geodesic dome
8 Collioure Shed
9 International style (architecture) Multi-storey car park

10 Kilmacolm Wickiup

Boldface indicates relevant entities.
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Fig. 6. Adding category-based information as a separate component: (left): (M1) = Baseline vs. (M3); (right):
(M2) = Baseline vs. (M6) for the XER2007 (top) and XER2008 (bottom) data sets.

entity related to buildings and structures, caused by the target category (#79C) being
too general. (M3) finds entities that belong to target categories found relevant to the
query; in this case categories with “charles” in their label, but unrelated to the topic
(e.g., “Charles Mingus albums” and “Charles Dickens novels”). This example illustrates
that combinations with the category-based component fail when categories have one of
the following characteristics: (1) the category is too general and the relevant entities
form only a small proportion of the category, or (2) the category is off topic; none of the
relevant entities belong to the category. In most other cases AP scores do increase when
a category-based component is added. An extreme case is topic #144 that achieves a
perfect score; here, the target categories (#144C) contain only the relevant entities. We
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Table VI. The Top 10 Ranked Entities for Topic #91

rank M3 qT-Q M4 qT-QC
1 The New York Trilogy In the Country of Last Things
2 Moon Palace The Winthrop Woman (novel)
3 Brooklyn Follies Extremely Loud and Incredibly Close
4 In the Country of Last Things Novel sequence
5 The Book of Illusions The City and the Pillar
6 Oracle Night Going After Cacciato
7 The Music of Chance Raj Quartet
8 Paul Auster Paul Clifford
9 Fanshawe (novel) The Age of Reason (Sartre)

10 French literature of the 19th century The Notebooks of Malte Laurids Brigge

Boldface Indicates Relevant Entities.
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Fig. 7. Using query-based categories vs. target categories for the category component: (M3) = Baseline
vs. (M4).

find that for most topics there is an optimal Wikipedia category that contains mostly
relevant entities and few others.

Query-based categories versus target categories. Figure 7 shows the per topic dif-
ferences in AP per topic between a model that uses query-based categories for the
category-based component (M3) and a model that uses target category information de-
fined explicitly by the user (M4). On the XER2008 topics (right), the difference in AP is
more often positive than negative; (M4) performs better. On the XER2007 topics (left),
the opposite occurs; the difference in AP is more often negative and (M3) performs bet-
ter. We investigate topic #91 as an example where using the query for finding relevant
categories is beneficial and topic #141 as an example where using the explicit target
category information is advantageous.

Table VI shows the top 10 entities for topic #91. The top 10 entities according to
(M3) form a perfect ranking up to rank 7, while the top 10 for (M4) contains noise. It
turns out that (M4) uses a general target category—#91C (“novels”), while one of the
categories found for (M3) is “books by Paul Auster” which contains almost exclusively
relevant entities. In the case of topic #141, an optimal category is given (#141C), so
(M4) performs well. This category is not found by using the query, however, as the
category label contains the term “Catalan” instead of “Catalunya,” which causes poor
performance for (M3).

These examples illustrate that using query-based categories performs better when
(1) there is an optimal category and (2) the query terms match with this category. In
case the optimal category is given, as part of the topic definition, (M4) performs better.

Target categories versus combination of query-based and target categories. The ob-
servations in the previous paragraph suggest that a combination of target categories
and query-based categories in the query-based component improves over using either
one alone. Figure 8 shows the difference in AP score per topic between models that use
only the target category in the category-based component ((M4) and (M6)) and models
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Fig. 8. Using category information vs. using the query and category information for the category component:
(left): (M4) = Baseline vs. (M5); (right): (M6) = Baseline vs. (M7) for the XER2007 (top) and XER2008 (bottom)
data sets.
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Fig. 9. Comparison of two extremes; using only the query vs. best performing model: (M1) = Baseline vs.
(M5).

that use both ((M5) and (M7)). On the XER2007 data combining the target category
with query-based categories almost never decreases AP, when it does it is only slightly
(≤0.10). On the XER2008 data we see the same trend with the exception of topic #132.
In this case the categories matching the query do not add any relevant categories, while
the given categories #132C are optimal categories.

Two extremes. Figure 9 shows a comparison between two extremes; using only the
query (M1) versus the best performing model (M5), according to Table I. On the
XER2007 topics (left), adding extra query and category information decreases per-
formance on 16 topics, is the same on five (difference is ≤0.01), and improves on 25
topics. On the XER2008 topics (right) adding information decreases performance on ten
topics, is the same on three, and improves on 22 topics. For both topic sets, the gains are
bigger than the losses, indicating an obvious benefit in using extra information in the
query model, although there are some clear individual exceptions. As we observed in
our earlier analysis, performance on topics experiencing a loss is influenced negatively
by two facts: the given categories are too general and there is no optimal category.
In cases where there is an optimal category, and it can be identified using the query,
performance will increase.
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Table VII. The Top 10 Terms and Categories Resulting from Blind Feedback, for Topics #30, #45, and #64

Topic #30 Topic #45 Topic #64
Category Term Category Term Category Term
European astronauts history Dutch painters work anarchism town
Astronauts oper Dutch artists artist films based on novels series
Russian cosmonauts station Paris museum dystopian fiction film
Slovenian americans air Dutch martial artists Paris graphic novels book
Soviet union cosmonauts engineer religion in paris paint films based on comics characater
Polish astronauts training Paris culture draw Jack the Ripper small
Russian astronauts science Paris metro Dutch 2001 films published
Chinese astronauts space mixed martial artists Netherland Vertigo titles story
Bulgarian cosmonauts mission Paris albums gallery Alan Turing kill
Belarusian cosmonauts flight Paris rer painter film adap from Vonnegut novel

Performance of #30 is not influenced by feedback; #45 is influenced negatively; and the performance of #64
is influenced positively.

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ΔA
P

XER2007 topics

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ΔA
P

XER2007 topics

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ΔA
P

XER2007 topics

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ΔA
P

XER2008 topics

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ΔA
P

XER2008 topics

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ΔA
P

XER2008 topics

Fig. 10. Baseline vs. blind feedback: (left): term-based; (center): category-based; (right): term- and category-
based combined for the XER2007 (top) and XER2008 data sets.

6.1.2. Expanded Query Models. Next we consider the use of feedback for the term and/or
category based component (that is, blind feedback, example based feedback, or a com-
bination) on top of the best model from Section 5.2, (M5).

Blind feedback versus no feedback. Figure 10 shows the difference in AP between
(M5) and (M5) extended with three types of blind feedback: term-based, category-
based, and a combination. On the XER2007 data set (top), the gains and losses are in
balance. The AP scores of the XER2008 topics (bottom) are generally positively affected.
On most topics, however, the blind feedback methods have no influence. This suggests
that the terms and categories added to the model in the feedback step contain relevant
information but no new information.

Table VII shows the terms and categories resulting from blind feedback for three
topics: #30, where performance is not affected by feedback; #45, where performance is
influenced negatively, and #64, where performance is positively influenced. For #45,
the feedback categories cause the model to drift towards (martial) artists and culture in
general (away from “Dutch artists in Paris”), while the feedback terms are relevant to
the topic. For the other two topics, both the feedback terms and categories are relevant.
In the case of #30, the optimal category is already found by (M5); feedback categories
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Fig. 11. Baseline (M5) vs. example entities: (left): term-based, (center): category-based, (right): term- and
category-based combined for the XER2007 (top) and XER2008 (bottom) data sets .

add only more specific variations (European/Russian astronauts). The same holds for
the terms; most of the feedback terms are already present in the query, while the new
terms do not shift the model to a new topic. In the case of #64, feedback does introduce
relevant terms and categories, for example, “films based on comics” and “Vertigo titles”
(Vertigo is a comics publisher). This example illustrates that feedback is only beneficial
if the query model is not already optimally defined by the baseline model (M5). In such
cases feedback can increase performance, depending on the top ranked entities found
by (M5).

Example-based feedback versus no feedback. Figure 11 shows the difference in AP
between (M5) and (M5) extended with three types of example-based feedback: term-
based, category-based, and a combination. For term-based feedback, results are mixed,
with slightly increasing and decreasing AP scores. Most topics, however, are unaffected,
suggesting that feedback does not introduce any new terms. For the category-based
feedback, as well as for the combination of term- and category-based feedback, we
observe that AP scores increase for most topics on both data sets. These results indicate
that target categories derived from examples are most effective in building an accurate
query (topic) model, while the term-based expansion is only marginally beneficial, as
it introduces noise into the model.

6.2. Parameter Sensitivity Analysis

We analyze the sensitivity of our models with respect to their parameters. The strategy
we employ is for each parameter we perform a sweep, while using the default settings
for all others. The best individually found values are then put together and used in
the optimized run, reported in Table IX. This method may not result in the overall
best possible parameter settings; however, it is not our aim here to tweak and fine-
tune parameters. Table VIII lists the actual parameter values used for our optimized
models. All models use λ to determine the mixture of the term-based and category-
based components, where a bigger value assigns more importance to the term-based
component. The expanded models use λT to adjust the weight between the baseline and
expanded term-based components, and λC to adjust the weight between the baseline
and expanded category-based components. Only the blind feedback model uses N, a
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Table VIII. Optimal Parameter Settings for the Runs Reported in Table IX

Model Opt. Data λ λT λC N KT KC

(M5) No expansion (ER) XER2007 0.7 - - - - -
XER2008 0.6 - - - - -

(M5-b) Expansion (blind, ER) Ind. XER2007 0.8 0.05 0.4 3 25 15
XER2008 0.7 0.05 0.7 5 25 15

Seq. XER2007 0.7 0.5 0.4 3 25 10
XER2008 0.7 0.5 0.5 5 25 5

(M5-e) Expansion (examples, LC) Ind. XER2007 0.6 0.6 0.8 - 15 5
XER2008 0.5 0.6 0.8 - 25 5

Seq. XER2007 0.6 0.6 0.8 - 15 5
XER2008 0.6 0.8 0.7 - 25 5

Table IX. Results Using Default Parameters vs. Parameters Optimized for MAP

XER2007 XER2008
Model Parameters MAP MRR xinfAP MRR
Entity ranking
(M5) No expansion default 0.2554 0.4531 0.3124 0.5024
(M5) No expansion optimized 0.2873� 0.4648 0.3156 0.5023
(M5-b) Expansion (blind) default 0.2541 0.4090 0.3365 0.4984
(M5-b) Expansion (blind) optimized (Ind.) 0.2854 0.4573 0.3267 0.5245
(M5-b) Expansion (blind) optimized (Seq.) 0.2767� 0.4596 0.3452 0.5029
Best performing INEX run 0.306 — 0.3809 —
List completion
(M5) No expansion default 0.2202 0.4042 0.2729 0.4339
(M5) No expansion optimized 0.2410 0.3997 0.2784 0.4693
(M5-e) Expansion (examples) default 0.3267 0.5357 0.3926 0.6353
(M5-e) Expansion (examples) optimized (Ind.) 0.3446 0.6042 0.4072 0.6835
(M5-e) Expansion (examples) optimized (Seq.) 0.3446 0.6042 0.4048 0.7089
Best performing INEX run 0.309 — 0.402 —

Significance tested against default parameter setting. Best results for each are in boldface.
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Fig. 12. The effect of varying λ (the weight of the term-based component) on the baseline entity ranking
run (M5).

parameter that determines the number of feedback entities to use, as in the example-
based case these entities are given. Both expanded models extract a number of terms
(KT ) and a number of categories (KC) from these entities for feedback.

6.2.1. Baseline. Our baseline, again, is produced by (M5). Runs without query expan-
sion involve only one parameter, λ. Figure 12 shows MAP/xinfAP and MRR scores
for different values of this parameter. On both data sets we observe a gradual in-
crease in performance as the mixture of the components moves towards a balance
(λ = 0.6/0.7). The fact that a balanced mixture achieves optimal results suggests that
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Fig. 13. The effect of varying the number of feedback entities, N, in case of blind feedback (M5-b). Expansion
takes place in both the term-based and category-based components.

each component contributes relevant information to the query model. The best em-
pirically found value is 0.7 and 0.6 for 2007 and 2008, respectively; this means that
slightly more importance is assigned to the term-based representation over category-
based (significant only for MAP, XER2007, when compared against the default setting,
that is, 0.5).

6.2.2. Query Expansion. Switching to the feedback runs, we look at two specific types
of expansion, both performed on top of the baseline (M5).

—(M5-b) expansion using blind feedback; we evaluate this model on the entity ranking
task (cf. qT-E’+qC-E’ in Table II).

—(M5-e) expansion using example entities; this model is tested on the list completion
task (cf. qT-E+qC-E in Table II).

Note that for both (M5-b) and (M5-e), expansion takes place in both the term-based
and category-based components.

First, we optimize λ in a similar fashion as was done for the baseline runs in
Section 6.2.1. The best found values are reported in Table VIII; plots are not presented
due to space considerations.

Next, we experiment with the number of feedback entities (N). This applies only to
the blind feedback model (M5-b); when example entities are provided, we use them all
for feedback. Figure 13 shows the results. We find the model to be insensitive to the
number of feedback entities. We observe very limited variance in terms of performance
when using different N values, and none of those differences are significant.

So far, expansion took place in both components (term- and category-based). To
single out the effect of each, in the followings we look at only one component at a
time (either term-based or category-based) while leaving the other unchanged (that
is, no expansion is performed). We start with the term-based component. Figure 14
shows performance with respect to the number of feedback terms. We find that the
models are very insensitive to the choice of this parameter, in terms of MAP/xinfAP,
while MRR scores display some fluctuation. Differences between the best and worst
performing settings are not significant. Figure 15 plots the effect of varying λT , the
weight with which expansion terms are taken into account. Again, we see hardly any
changes in terms of MAP/xinfAP. In the case of blind feedback (M5-b), highest MRR
scores—for both years—are achieved when relying almost exclusively on the baseline
model (λT = 0.05); the difference compared with the baseline setting (λT = 0.5) is
significant for 2007.
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Fig. 14. The effect of varying KT . Expansion takes place in the term-based component only. (Top) blind
feedback (M5-b); (bottom) examples (M5-e).
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Fig. 15. The effect of varying λT . Expansion takes place in the term-based component only. (Top) blind
feedback (M5-b); (bottom) examples (M5-e).
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Fig. 16. The effect of varying KC . Expansion takes place in the category-based component only. (Top) blind
feedback (M5-b); (bottom) examples (M5-e).

Next, we perform a similar analysis for the category-based component. Figure 16
shows the number of expansion categories. All MAP/xinfAP curves are relatively flat;
the only exception is (M5-e) on the 2008 topics. Here, using a small number of feedback
categories (KC = 5) delivers clearly the best performance. However, this is not signifi-
cantly better than using any other value for this parameter. With one exception ((M5-b),
XER2007) the highest MRR scores are achieved using a small number of feedback cat-
egories. But, again, none of the differences are significant. Finally, the effect of varying
λC , the weight put on expansion categories, is shown in Figure 17. The curves are very
flat in case of blind feedback (M5-b), with no significant differences. The example-based
feedback model (M5-e) is much more interesting; best performance is achieved with
an unbalanced mixture, with most of the weight assigned to the expanded component
(λC = 0.8). This demonstrates that when feedback entities are indeed relevant ones,
category-based feedback is very rewarding, as it contributes new information to the
query model.

Overall, we can see that our models are very robust with respect to the number of
feedback entities, expansion terms, and expansion categories. We observed only minor
differences in performance when changing the weight of mixture models in the term-
based case (Figure 15). This was also the case for category-based expansion, in case of
blind feedback. When using examples, however, the expanded model did assign a lot of
weight to the feedback categories (λC = 0.8). This indicates that the example entities
generally introduce “good” target categories, and these are of more value to the model
than terms.

6.2.3. Optimized Runs. Given the optimal parameter settings listed in Table VIII, we
report on the performance of our models with those optimal parameter settings in
Table IX. Since these parameters were obtained independently of each other, we refer
to this setting as Ind. We also experimented with another optimization method, where
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Fig. 17. The effect of varying λC . Expansion takes place in the category-based component only. (Top) blind
feedback (M5-b); (bottom) examples (M5-e).

parameters were tuned sequentially (Seq): first, the number of feedback entities (N,
only for (M5-b)); followed by the optimization of the term-based and category-based
components separately (first, the number of feedback terms/categories, followed by the
mixture weight); and finally the mixture parameter that controls the weight between
the term- and category-based representations (λ). In the interest of space we report
only the actual values, in Table VIII. While there are clear differences in absolute
values, the optimized runs rarely manage to significantly outperform the default
settings in terms of MAP.

To calibrate our scores with those obtained by others, we compare our scores against
the best sores achieved at the 2007 and 2008 editions of the INEX Entity ranking track
(see Table IX). For the entity ranking task, we see that the best performing runs beat our
best runs. In 2007, this was a run that used random walks to model multi-step relevance
propagation between linked entities [Tsikrika et al. 2008]; in 2008 it was a run that used
topic difficulty prediction to dynamically set the values of retrieval parameters (the
weight of LinkRank, category similarity, and full text scores) [Vercoustre et al. 2009].
For the list completion task, the outcomes are somewhat different: we match or even
outperform the best performing runs in 2007 and 2008. In 2007, the best performing
run used a method to exploit the locality of links around example entities, in addition
to utilizing link structure and category information [Vercoustre et al. 2008]; in 2008,
they expanded their approach with topic difficulty prediction [Vercoustre et al. 2009].

7. CONCLUSIONS

We have introduced a probabilistic framework for entity search. This framework
allowed us to systematically explore ways of combining query and category informa-
tion as well as example entities to create a query model. The framework also allowed
us to transparently integrate term-based and category-based feedback information. We
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explored our models along many dimensions; experimental evaluations were performed
using the 2007 and 2008 editions of the INEX Entity Ranking track.

We demonstrated the advantage of a category-based representation over a term-
based representation for query modeling. We also showed the effectiveness of category-
based feedback, which was found to outperform term-based feedback. The biggest im-
provements over a competitive baseline based on term- and category-based information
were achieved when both term-based and category-based feedback are used with ex-
ample entities (provided along with the textual keyword query). Our models were able
to use the additional information provided by exploiting examples and categories in
an effective manner, showing very competitive performance on both the entity ranking
and list completion tasks on all available test sets.

In future work we plan to examine ways of automatically estimating parameters that
are topic-dependent (that is, dependent on the query terms, and/or target categories,
and/or example entities), devise methods for determining whether to apply feedback,
and explore the potential of our models for the “related entity finding” task recently
launched at TREC [Balog et al. 2010].

More generally, the effectiveness of the methods used in the paper suggests that
we branch out in at least two directions. First, what if we try to automatically enrich
queries by associating categories with them and then use these for entity retrieval
purposes using the models of this paper? Meij et al. [2009] show that this association
can be carried out with very high confidence. Second, in addition to example entities
and categories, other types of enriched query input may be inferred from the user’s
interaction with a search engine in the context of entity retrieval, such as clicks and
session information [Huurnink et al. 2010]. How can we incorporate these types of
more noisy information in the models detailed in this article?
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