
Semistructured Data Search

Krisztian Balog

University of Stavanger
NO-4036 Stavanger, Norway
krisztian.balog@uis.no

Abstract. This paper presents a selection of methods for searching in
heterogeneous data collections where some amount of structure is avail-
able. We start with a general retrieval framework, based on generative
probabilistic modeling, for ranking unstructured document representa-
tions. Then, we consider structure at two different levels: documents and
queries. For documents, the internal structure is captured through the
use of multiple document fields, and various approaches to setting field
weights are discussed. For queries, the focus is on effectively utilizing
additional input data that the user might provide along with the key-
word query, such as target categories or example documents. We place
a particular emphasis on methods that are robust with respect to the
availability of structured data and are able to deal with inconsistent or
incomplete information.

Keywords: Semistructured data, generative probabilistic models, doc-
ument modeling, query modeling.

1 Introduction

Traditionally, information retrieval (IR) systems have dealt with the problem
of search in unstructured text collections. Database (DB) systems, on the other
hand, have aimed at querying structured data that is highly organized and fol-
lows a strict schema. While this distinction still exists, it is not as sharp as a
decade ago and some convergence between the two fields has occurred. To a large
extent, this can be attributed to changes in the data landscape; over the past few
years, alongside the document-oriented web, the Web of Data has emerged [8, 9].
This resulted in increased availability of (semi)structured data and made it pos-
sible to respond to users’ queries with specific entities and objects, as opposed
to merely a ranked list of documents. The Web has also changed users’ ex-
pectations about how search applications should function; the single-search-box
paradigm has become widespread, and ordinary users have little incentive to for-
mulate structured queries (which would require the knowledge of the underlying
schema as well as that of the query language). However, users might supply
additional input data beyond the keyword query, such as target categories or
example documents, provided that it is made sufficiently effortless for them to
do so (for example, through specialized interfaces or query assistance services).
This tutorial introduces a selection of methods that are able to effectively utilize
structure that is present on the document side or arise on the query side.

N. Ferro (Ed.): PROMISE Winter School 2013, LNCS 8173, pp. 74–96, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Semistructured Data Search 75

1.1 Scope

For a long time, semistructured search was taken to be synonymous with XML
retrieval. This paper offers a different perspective. Our unit of retrieval is doc-
uments, more precisely, document-based representations of entities or objects,
which are assumed to be readily available. Unlike in XML retrieval, we do not
provide responses beyond this level. Further, we assume that there is no separate
schema; in XML, structure can be enforced by the XML schema with virtually
the same rigor as in a relational database. Our approaches are primarily text-
based; in Section 5.2 we introduce methods for modeling categories associated
with documents, an idea that could be conceptualized further as an IR equiv-
alent of categorical attribute values in databases. However, we do not support
query operators, for example, for handling numerical values. Also, the methods
we present in this chapter work with flat structures (but often with multiple
ones); this stands in contrast with XML retrieval where much of the modeling
efforts revolve around hierarchical structures. We particularly aim for methods
that are robust with respect to the availability of structure and can be applied
to a wide range of document types, from web documents written in HTML to
entities described in RDF. Our general attitude towards query-side structure is
that any additional input the user might provide beyond the keyword query is to
be seen as complementary descriptions of the underlying information need and
to be considered as “structural hints” as opposed to rigid formal constraints. For
an excellent overview on XML retrieval we refer the reader to [26].

1.2 Organization

In Section 2 we explain what we mean by semistructured data search. Next,
in Section 3 we present our general retrieval framework, based on generative
probabilistic modeling techniques. This provides a common ground for methods
that follow later and a principled way of accounting for the inherent uncertainty
and heterogeneity involved with searching in this type of data. Section 4 starts
with unstructured document retrieval and discusses methods for capturing in-
ternal document structure using multiple document fields. It also deals with
questions related to setting field weights. Section 5 considers scenarios where
the user can optionally complement the keyword query with additional informa-
tion, such as target categories or example documents. Utilizing this extra input
requires changes both on the query and on the document side. We conclude with
a summary of our findings in Section 6.

2 Semistructured Data

In this section we briefly explain what we mean by semistructured data in the
context of this tutorial. It is best understood in contrast to unstructured and
structured data. The key characteristics are summarized in Table 1.

Unstructured data can be found in many different forms, including documents,
spreadsheets, web pages, emails, blogs, tweets, and medical records. Generally

76 K. Balog

Table 1. Comparison of unstructured, semistructured, and structured data search

Unstructured Semistructured Structured

Unit of retrieval documents objects tuples
Schema no self-describing fixed
Queries keyword keyword++ formal languages

speaking, it also includes non-textual data like images, video, and audio, how-
ever, our focus here is limited to textual data. There is little uniformity among
the different forms, so content is utilized in an unstructured manner without
making any further assumptions about the format. Retrieval in unstructured
text collections is often referred to as full-text search.

Structured data is typically highly organized and tabular, such as the infor-
mation stored in relational databases. The semantics of the data are captured
in a data model and are mapped to a database schema. The schema describes
various elements of the database, including tables, fields, and relationships, and
imposes constraints to ensure the consistency of the data. Querying of the data
is done using formal languages, like SQL.

Semistructured data is characterized by the lack of rigid, formal structure, such
as the data models associated with relational databases. This means that there
is no single schema to the data. Instead, the schema is contained within the data
and is evolving together with the content, thereby making it “self-describing.”
Parts of the data yield little structure or lack structure altogether (e.g., plain
text). Even when structural annotations are present, they are often ignored (e.g.,
full-text search). It is important to note that our take on semistructured data
is somewhat different from the traditional view, especially when it comes to
XML (cf. Section 1.1). Throughout this paper we will simply refer to the task
of ranking documents. What we really mean by that is ranking document-based
representations of objects or entities. Our queries are primarily keyword-based,
which, optionally, can be complemented with additional components; hence, we
refer to these as keyword++.

3 Retrieval Framework

The task we address is ad-hoc retrieval : answering a one-off query, represent-
ing the user’s underlying information need, with a ranked list of documents.
(Note that by documents we mean the document-based representations of ob-
jects or entities.) We approach this task in a generative probabilistic modeling
framework. Generative models are attractive from both theoretical and empirical
perspectives, and have been successfully applied to a wide range of retrieval prob-
lems [27, 44]. Importantly for us, generative models allow for a sound incorpora-
tion of structural clues into the retrieval model and are particularly well-suited
for settings where training data is not available in large quantities. Another
pragmatic consideration behind this choice is that it enables us to present the

Semistructured Data Search 77

material that follows in this chapter in a coherent and consistent manner. At
the same time, we would like to emphasize that our main focus is on developing
approaches for dealing with structure effectively and efficiently, and that gener-
ative models represent one possible solution for implementing general retrieval
strategies; the same ideas may also be expressed in other retrieval frameworks.

Ranking documents given an input query q is done according to probability
P (d|q), computed for each document d in the collection. Instead of estimating
this probability directly, a more accurate estimate may be obtained by applying
Bayes’ theorem:

P (d|q) = P (q|d)P (d)

P (q)

rank
= P (q|d)P (d). (1)

Notice that P (q) in the denominator is the same for all documents, therefore, it is
ignored for the purpose of ranking. We are then left with two main components:
the query likelihood P (q|d) and the prior probability of the document P (d).
Under this formulation the ranking of documents may be viewed as the following
generative process. First, a particular document d is chosen with probability
P (d). Then, we subsequently attempt to draw the query q from this document
with probability P (q|d).

The simplest and most common way of estimating P (q|d) is using multino-
mial unigram language models. Indeed, this is what we will be discussing first
in the next section, then gradually moving to more complex estimation schemes
based on document structure. In Section 5 we will move from keyword-only
queries to semistructured queries containing semantic annotations, target types,
or example documents. Making effective use of such additional information often
necessitates query representations that go beyond the term level, breaking the
query likelihood into multiple components. The prior probability of the docu-
ment, P (d), is often assumed to be uniform (and, as such, it can be ignored
since it does not influence the ranking). Alternatively, it can be used encode
query-independent evidence based on document length, authority, popularity,
link structure, etc. [21, 22, 32].

4 Modeling Documents

This section is concerned with the modeling of internal document structure. We
start with an unstructured “flat text” representation in Section 4.1. Then, we
continue in Section 4.2 with an approach, which has been the predominant to
date, to dealing with document structure: through the use of multiple document
fields. Without exception, the models we discuss in this section are based on gen-
erative language modeling techniques. Language models, as the name suggests,
represent language usage as statistical information associated with a vocabulary.
A language model θd is built for each document d and then used to describe how
likely this document would generate the query q, P (q|θd). We will cover this pro-
cess in more detail next. Our presentation is self-contained, but the interested
reader is referred to [45] for a full account on language modeling.

78 K. Balog

t PML(t|d) t PML(t|d)
query 0.0150 language 0.0046
document 0.0135 field 0.0046
documents 0.0081 structure 0.0043
equation 0.0080 films 0.0036
data 0.0070 terms 0.0035
probability 0.0066 information 0.0035
model 0.0065 modeling 0.0033
retrieval 0.0058 example 0.0033
fields 0.0058 using 0.0031
term 0.0046 representation 0.0031

Fig. 1. Top terms with the corresponding term probabilities from the language model
of this article (after stopword removal)

Fig. 2. Language model of this article, visualized as a tag cloud

4.1 Unstructured Document Representation

The simplest form of document representation is to ignore any structural clues
or elements and take the whole document to be a bag of words. In this view of
the document the exact ordering of terms is ignored and the importance of a
term within the document is proportional to its number of occurrences (but is
independent of where in the document those occurrences take place). Language
models provide an elegant way of capturing this notion of term importance by
representing each document as a multinomial probability distribution over the
vocabulary of terms. We write θd to denote the model of document d, and the
probability of a term t in the document’s model is P (t|θd). This probability tells
us how likely we would see t if we sampled a term randomly from d. Much of
our efforts in this section will revolve around the estimation of this model.

Semistructured Data Search 79

The most straightforward way of obtaining the document language model is
by using the maximum likelihood (ML) estimation:

P (t|θd) = PML(t|d) = n(t, d)

|d| , (2)

where n(t, d) denotes the number of times term t occurs in document d and
|d| is the length of the document (i.e.,

∑
t n(t, d)). This effectively means that

the probability of the term equals to its relative frequency in the document.
Figure 1 illustrates the idea of a document language model by listing the top
terms (i.e., the ones with highest probabilities) given the language model of this
article. A language model could be plotted as a histogram, like it is done in
Figure 12, where bars correspond to terms and their heights are proportional to
term probabilities. A visually more exciting alternative is to display it as a word
cloud, such as the one shown in Figure 2. The document model θd is then used to
estimate the probability of a given query q by taking the product of individual
term probabilities as follows:

P (q|θd) =
∏

t∈q

P (t|θd)n(t,q), (3)

where n(t, q) denotes the number of times term t is present in query q. Assuming
uniform document priors (cf. Eq. 1) this probability can be used directly to pro-
duce a document ranking. To prevent numerical underflows, this computation,
in practice, is performed in the log domain. We rewrite Eq. 3 as follows:

logP (q|θd) =
∑

t∈q

n(t, q) logP (t|θd). (4)

The document model constructed using the ML estimator has a severe lim-
itation: unseen words in the document would get a zero probability. Moreover,
because of the multiplication of individual term probabilities in Eq. 3, the whole
query would be assigned a zero probability in such cases. Obviously, this is unde-
sired behavior. The main purpose of smoothing is to assign a non-zero probability
to the unseen words and to improve the accuracy of word probability estimation
in general. This is typically achieved by discounting the probabilities of the words
seen in the text and then assigning the extra probability mass to unseen words
according to a background language model estimated using the entire collection:

P (t|θd) = (1 − λ)PML(t|d) + λPML(t|C), (5)

where the interpolation parameter λ controls the influence of the collection
model, PML(t|C), which is taken to be a maximum likelihood estimate:

PML(t|C) =

∑
d n(t, d)∑

d |d|
. (6)

This representation of the document as a mixture between the document and
the collection is usually referred to as the standard language modeling approach.

80 K. Balog

The linear interpolation in Eq. 5 is also known as Jelinek-Mercer smooth-
ing. Notice that the amount of smoothing applied is the same for all docu-
ments. Intuitively, longer documents may require less smoothing (as they already
have a richer representation, through having more terms). The Bayes smoothing
method, often referred to as Dirichlet smoothing, implements this idea by setting

λ =
μ

|d|+ μ
(1 − λ) =

|d|
|d|+ μ

, (7)

where μ is a parameter. Smoothing plays an important role in language modeling
and the choice of the smoothing method and smoothing parameter can have a
considerable impact on retrieval performance [47]. As a general rule of thumb,
Dirichlet smoothing with μ set to the average document length in the collection
is usually a reasonable starting point.

Despite its relative simplicity, the standard language modeling approach is
a very powerful one; the overall idea of representing “things” by the language
associated with them is intuitive and works well in many application scenarios.

4.2 Fielded Document Representation

Documents are rarely just flat text. For example, email messages have from,
to, subject, and body fields; news articles are divided into title, lead, and body
elements; web documents are annotated with structural markup using HTML.
A common way to incorporate the internal structure of documents into the re-
trieval model is through the usage of document fields. Generally speaking, a field
is made up of specific parts or segments of the document. We do not impose
strict constraints on document fields. Specifically, we do not require each term
occurrence to be assigned to exactly one field, i.e., fields can be overlapping.
Also, fields do not necessarily have to cover the entire document, i.e., there may
be parts of a document that are not associated with any specific field. In prac-
tical terms, fields usually correspond to the contents of particular markup tags
provided by the structural annotation. In web document retrieval, for example,
title, headings, meta keywords and descriptions, anchor text, and body text may
be regarded as document fields [33]. Figure 3 shows an excerpt from a HTML
file, with the corresponding field based document representation presented in
Figure 4. When searching in the Web of Data, entities are described in the form
of subject-predicate-object (SPO) triples of the RDF data model; a natural way
of building a document-based representation of a particular entity is to consider
all triples with the given subject, create separate fields for each predicate, and
associate the corresponding object values with those fields; Figure 5 displays an
example.

Next, we present an extension to our generative language modeling approach
that makes us able to deal with multiple fields. Rather than using the language
model estimated from a single document representation, this method estimates
a mixture language model based on a combination of language models created
from the various document fields [33]. We will refer to this approach as the
mixture of language models (MLM).

Semistructured Data Search 81

<html>

<head>

<title>Winter School 2013</title>

<meta name="keywords" content="PROMISE, school, PhD, IR, DB" />

<meta name="description" content="PROMISE Winter School 2013" />

</head>

<body>

<h1>PROMISE Winter School 2013</h1>

<h2>Bridging between Information Retrieval and Databases</h2>

<h3>Bressanone, Italy 4 - 8 February 2013</h3>

<p>The aim of the PROMISE Winter School 2013 on "Bridging

between Information Retrieval and Databases" is to give

participants a grounding in the core topics that constitute the

multidisciplinary area of information access and retrieval to

unstructured, semistructured, and structured information.</p>

[...]

</body>

</html>

Fig. 3. Excerpt from a HTML page

Field Content

title Winter School 2013

meta PROMISE, school, PhD, IR, DB
PROMISE Winter School 2013

headings PROMISE Winter School 2013
Bridging between Information Retrieval and Databases
Bressanone, Italy 4 - 8 February 2013

body The aim of the PROMISE Winter School 2013 on ”Bridging
between Information Retrieval and Databases” is to give
participants a grounding in the core topics that constitute
the multidisciplinary area of information access and retrieval to
unstructured, semistructured, and structured information.

Fig. 4. Fielded document representation based on HTML markup for the document
shown in Figure 3

Formally, let F be the set of possible fields, where f ∈ F denotes a spe-
cific field. The document language model (θd) is taken to be a weighted linear
combination of the field language models (θdf

):

P (t|θd) =
∑

f∈F

αfP (t|θdf
), (8)

where αf is the weight associated with field f , such that
∑

f∈F αf = 1. The
field-specific language models are estimated analogously to the unstructured

82 K. Balog

Field Content

rdfs:label Audi A4
rdfs:comment The Audi A4 is a compact executive car

produced since late 1994 by the German car
manufacturer Audi, a subsidiary of the [. . .]

dbpprop:production 1994 2001 2005 2008
rdf:type dbpedia-owl:MeanOfTransportation

dbpedia-owl:Automobile

dbpedia-owl:manufacturer dbpedia:Audi

dbpedia-owl:class dbpedia:Compact executive car

owl:sameAs freebase:Audi A4

is dbpedia-owl:predecessor of dbpedia:Audi A5

is dbpprop:similar of dbpedia:Cadillac BLS

Fig. 5. Excerpt from the fielded document representation of the entity Audi A4, based
on its RDF description in DBpedia. URIs are shortened for convenience and are
typeset in typewriter font. URLs in the content part are typically replaced by the
name/label/title of the resource they point to [31, 32].

document model (cf. Eq. 5), the main differences being that term occurrences
are restricted to the given field and a field-specific collection language model is
used for smoothing:

P (t|θdf
) = (1− λf)PML(t|df) + λfPML(t|Cf), (9)

where both components are maximum likelihood estimates:

PML(t|df) = n(t, df)

|df | PML(t|Cf) =

∑
d n(t, df)∑

d |df |
(10)

In Eq. 10 n(t, df) denotes the number of occurrences of term t in field f of
document d and |df | stands for the length of the field. The smoothing parameter
λf is set using Dirichlet smoothing.

Now that we have discussed the retrieval model, two main questions remain
to be addressed: (i) How to organize document content into fields? and (ii) How
to estimate the corresponding field weights? As we shall see, these two questions
are not independent of each other; having a larger number of fields can make the
setting of field weights quite challenging. We differentiate between two settings.
In one case, fields may be seen as alternative (in a sense “interchangeable”)
descriptions of the same content. In the other case, fields capture distinct prop-
erties or aspects; here, fields are characterized by distinctive term distributions.
Our fundamental assumption, common to both settings, is that the information
contained in the different fields is complementary in nature and that is why we
would benefit from combining these fields.

Fields as Alternative Document Representations. A typical application
scenario is web document retrieval. Fields used here include title, headings, meta

Semistructured Data Search 83

keywords and descriptions, anchor text, and body text. These are all descriptions
of the same content and mainly differ in the number of words used (but not in
the vocabulary). It is likely that many of the high probability terms according
to the field language model (i.e., P (t|θdf

)) are shared among the different fields.
Therefore, this approach rewards documents where the same query term appears
in multiple fields.

In the absence of training data, field weights (αf in Eq. 8) can be set uniformly
(i.e., αf = 1/|F |, where |F | is the total number of fields) or proportional to the
field length (measured as the sum of field lengths of the given field type, i.e.,
αf ∝ ∑

d |df |). An alternative solution is to set field weights proportional to
their individual performance (that is, using only one particular field language
model for ranking documents at a time) [33]. Obviously, this last method requires
training queries with corresponding relevance assessments.

Fields Representing Distinct Aspects. Our use-case for illustrating this
setting is entity retrieval, where documents describe a single type of entity, e.g.,
people or movies, and structured representations are readily available (for ex-
ample in XML or RDF). For the sake of simplicity we assume that fields are
not hierarchically organized. The underlying assumption here is that each query
term has an implicit mapping to one or more fields (where “more” means at most
a handful fields). Kim et al. [24] proposes a method, termed probabilistic retrieval
model for semi-structured data (PRMS), that uses the distribution of words in
the fields to provide clues for this mapping process. Under this approach the
static field weights (αf in Eq. 8) are replaced by a mapping probability P (f |t):

P (t|θd) =
∑

f∈F

P (f |t)P (t|θdf
). (11)

The probability of mapping a (query) term t to a given document field f is
estimated by applying Bayes’ theorem and combining the prior field probability
P (f) and the probability of a term occurring in a given field P (t|f):

P (f |t) = P (t|f)P (f)

P (t)
=

P (t|f)P (f)
∑

f ′∈F P (t|f ′)P (f ′)
. (12)

The prior probability of the term, P (t), is further rewritten using the law of
total probability (second step in Eq. 12); we write f ′ in the denominator when
marginalizing over all possible fields so that to avoid confusion with the field f
for which the mapping probability is being computed. In the end, we are left with
two components to be estimated. The prior P (f) is the probability of mapping
the query term to field f before observing collection statistics; if could be set
manually, for example, based on domain-specific background knowledge, or left
to be uniform. The probability of a term given a field, P (t|f) is conveniently esti-
mated using the collection language model of that field, i.e., P (t|f) = PML(t|Cf).
This, we already have from earlier (see Eq. 10). Figure 6 shows the top fields
and their mapping probabilities for an example query.

84 K. Balog

t = “Meg” t = “Ryan” t = “war”
f P (f |t) f P (f |t) f P (f |t)
cast 0.407 cast 0.601 genre 0.927
team 0.381 team 0.381 title 0.070
title 0.187 title 0.017 location 0.002

Fig. 6. Example mapping probabilities for the query Meg Ryan war when searching in
the IMDB collection

Two key assumptions made in PRMS are that (i) the collection is homoge-
neous and (ii) each field has a distinctive distribution of terms. These conditions
are met in our example where the collection is limited to entities of a single
type; in heterogenous collections with multiple types of entity, PRMS cannot be
applied successfully [12]. One possible remedy is to rank each entity type with
a type-specific model (that considers only fields specific to that type) and then
merge results [23]. Another option is to reduce the number of fields considered
by grouping them together [10, 31].

4.3 Further Reading

It was observed quite early in studies of retrieval models that searching on multi-
ple document representations (such as title and abstract or free text and manu-
ally assigned index terms) and combining these representations during retrieval
was more effective than searching on a single representation [13, 18]. All es-
tablished retrieval frameworks have been generalized to multi-field document
retrieval, including BM25 [38] and Divergence From Randomness [36]. These
models, as well as the ones we have discussed earlier in this section, combine
evidence from multiple fields on the term level, inside the document representa-
tion. It is also possible to combine evidence on the query level; the idea there
is to rank documents using individual representations (possibly using different
retrieval techniques depending on the particular representation) and then com-
bine these retrieval results to produce a final ranking. This technique is often
referred to as meta-search or data fusion in the literature [1, 30]. Robertson
et al. [38] argue that components that contribute to the document score should
be combined across fields at an earlier stage, i.e., on the term level and not on
the query level. In this section we limited ourselves to flat structures, that is,
a set of fields, ignoring any (hierarchical) relationships that may exist between
them. Both language modeling and BM25 have been extended to handle hierar-
chical structures for element level XML retrieval [29, 34]. It is also possible to
incorporate hierarchical field structures for entity retrieval, but the benefits of
that over flat structures are yet to be explored [31].

5 Modeling Queries

A keyword query is a very sparse representation of the user’s underlying in-
formation need. Obtaining a more detailed specification, a process known as

Semistructured Data Search 85

query modeling, has been a topic of active research from the very early years of
IR [39]. The focus of our attention here is on queries that comprise not only a se-
quence of terms, but, optionally, additional components as well. It is paramount
that we want to avoid the user having to use structured query languages. The
non-keyword part that we aim for as extra input is (i) often highly applica-
tion specific, (ii) typically collected through specialized user interfaces or query
assistance services, and (iii) may or may not be provided by the user.1 Such
additional query components can entail, for example, (i) semantic annotations
with entities or concepts, (ii) target types/categories, or (iii) examples of items
(documents or entities) that the user deems relevant. This results in what we
call a keyword++ (or semistructured) query.

Previous benchmarking evaluation campaigns have presented several examples
for scenarios that come with such enriched queries.2 The TREC 2007 Enterprise
track addresses a topic distillation task where users have to create overview
pages on specific topics [3]. The additional information provided by the user
consists of a small number of example documents; see Figure 7. The INEX 2007-
2009 Entity Ranking track focuses on the retrieval of entities, where entities
are represented by their corresponding Wikipedia article [14]. Keyword queries
are complemented with target categories and/or a small number of example
entities; see Figure 8. The TREC Entity track studies the related entity finding
task: returning a ranked list of entities of a specified type that engage in a given
relationship with a particular source entity [7]; see Figure 9.

Although this section is titled “modeling queries,” in order to utilize this
extra information, we will be required to make changes in the representation of
documents as well, as we shall soon see.

5.1 Term-Based Modeling

The ranking of documents so far was based on (log) query likelihood, as defined
in Eq. 4. We repeat this formula for convenience:

logP (q|θd) =
∑

t∈q

n(t, q) logP (t|θd). (13)

Throughout Section 4, our focus was on devising ways to improve the estimation
of the document language model, P (t|θd). Next, we shift our attention to refining
the representation of the query. Notice that this formula considers all query

1 It is worth pointing out that the non-keyword components can also be obtained
automatically; clearly this will not be of the same quality as if it was provided by
the user explicitly, but can still improve retrieval performance. Importantly, estimat-
ing specific query components is a problem significantly easier than automatically
translating an unstructured query into a structured one.

2 The descriptions of information needs are called “topics” in TREC lingo. As can be
seen in Figure 7 and 8, these also include narratives and/or extended descriptions
of the information being sought. We do not use those fields here and consider only
<query> in Figure 7 and <title> in Figure 8 as the keyword query.

86 K. Balog

<top>

<num>CE-012</num>

<query>cancer risk</query>

<narr>

Focus on genome damage and therefore cancer risk in humans.

</narr>

<page>CSIRO145-10349105</page>

<page>CSIRO140-15970492</page>

<page>CSIRO139-07037024</page>

<page>CSIRO138-00801380</page>

</top>

Fig. 7. Example topic description from the TREC 2007 Enterprise track

terms with equal importance. What we would like, instead, is to be able to
weigh individual terms differently. Therefore, we replace n(t, q) with P (t|θq) and
refer to it as the query model. Analogously to the document model, this is a
probability distribution, i.e.,

∑
t P (t|θq) = 1. Substituting back to Eq. 13 we

arrive at the following equation:

logP (q|θd) =
∑

t∈q

P (t|θq) logP (t|θd). (14)

This generalized model equals to ranking based on negative Kullback-Leibler
(KL) divergence between the query and document models,3 also known as the
KL-divergence retrieval model [25, 46]. The estimation of the document model θd
is the same as with the query likelihood retrieval model, but the query model θq
offers interesting opportunities for leveraging additional input and/or feedback
information to improve retrieval accuracy.

In the baseline case, each query term receives equal weight:

PBL(t|θq) = n(t, q)

|q| , (15)

where |q| is the length of the query, measured in the number of terms. This is
equivalent to the query likelihood scoring.

For improved query modeling, the basic idea is to interpolate the original
(baseline) query model with an expanded query model θ̂q:

P (t|θq) = (1− α)PBL(t|θq) + αP (t|θ̂q), (16)

where α ∈ [0, 1] is a parameter to control the importance of the expanded model.
Using a mixture of the original and expanded query models ensures that we do
not drift too far away from the original query. Figure 10 illustrates the idea with
the original query shown on the left side and the expanded query (after mixing
with the original query using Eq. 16) is on the right.

3 Apart from a query-dependent constant, which does not affect the ranking.

Semistructured Data Search 87

<inex_topic topic_id="95" query_type="XER">

<title>Tom Hanks movies where he plays a leading role.</title>

<entities>

<entity id="142417">Apollo 13</entity>

<entity id="468293">Philadelphia</entity>

<entity id="41528">Forrest Gump</entity>

<entity id="158982">You’ve got mail</entity>

</entities>

<categories>

<category id="101422">movies</category>

<category id="81332">films</category>

</categories>

<description>

This query should return the names of movies in which

Tom Hanks played the leading role.

</description>

<narrative>

Tom Hanks is a popular actor and the winner of many awards.

This query should return his all the feature films in which he

played the lead.

</narrative>

</inex_topic>

Fig. 8. Example topic description from the INEX 2007 Entity Ranking track

<query>

<num>22</num>

<entity_name>

Organization of Petroleum Exporting Countries (OPEC)

</entity_name>

<entity_homepage id="clueweb09-en0010-21-28880">

http://www.opec.com/

</entity_homepage>

<target_entity>location</target_entity>

<target_type_dbpedia>Country</target_type_dbpedia>

<narrative>

Find countries that are members of OPEC

(the Organization of Petroleum Exporting Countries).

</narrative>

</query>

Fig. 9. Example topic description from the TREC 2011 Entity track

88 K. Balog

t PBL(t|θq) t P (t|θq)
machine 0.5000 vision 0.2796
vision 0.5000 machine 0.2762

image 0.0248
vehicles 0.0224
safe 0.0220
cam 0.0214
traffic 0.0178
technology 0.0176
camera 0.0173
object 0.0147

Fig. 10. Baseline (left) and expanded (right) query models for the query machine
vision; only the top 10 terms are shown

One possible route for leveraging example documents (denoted as E), provided
by the user as additional input, is to use them for estimating the expanded query
model. This can be done with the help of (pseudo) relevance feedback techniques.
We illustrate it with two popular and effective models, called relevance models,
proposed in [28]. The principal idea is to construct relevance models based on co-
occurrences of the original query terms with other terms in the set of feedback
documents. We use these relevance models as our expanded query model θ̂q.
Relevance model 1 (RM1) assumes full independence between the original query
terms and the expansion terms:

PRM1(t|θ̂q) ≈
∑

d∈E

P (d)P (t|θd)
∏

t′∈q

P (t′|θd), (17)

where E is the set of example documents, and P (t|θd) is a smoothed document
language model (cf. Eq. 5). Mind that t stands for a term in the expanded query
model while t′ ∈ q denotes original query terms. For convenience, document
priors are assumed to be uniform.

Relevance model 2 (RM2) tackles a different sampling strategy, where original
query terms t′ ∈ q are still assumed to be independent of each other, but they
are dependent on the expansion term t.

PRM2(t|θ̂q) ≈ P (t)
∏

t′∈q

∑

d∈E

P (t′|θd)P (d|t), (18)

where P (d|t) is computed as

P (d|t) = P (t|θd)P (d)

P (t)
=

P (t|θd)P (d)
∑

d′∈E P (t|θd′)P (d′)
. (19)

In Eq. 19 the probability of a document given a term is first rewritten using
Bayes’ theorem, then the probability of the term in the denominator is marginal-
ized over all example documents (denoted with d′ to avoid confusion with d).

Semistructured Data Search 89

RM1 can be viewed as sampling of all query terms conditioned on t: a strong
mutual independence assumption, compared to the pairwise independence as-
sumptions made by RM2. Empirical evaluation has shown that RM2 is more
robust, and performs slightly better that RM1 [4, 28].

The sampling of expansion terms does not have to be dependent on the orig-
inal query. In a scenario where the user provides example documents, we can
expect that these documents provide important aspects that are not covered
by the keyword query. Thus, avoiding biasing the selection of expansion terms
toward the original query can possibly lead to a more accurate representation
of the underlying information need. The method introduced in [4] estimates the
expanded query model as follows:

PEX(t|θ̂q) ≈
∑

d∈E

P (t|θd)P (d|E), (20)

where P (d|E) is the importance of a given document given the set of example
documents E. In the simplest case, this probability is distributed uniformly
among the examples, i.e., P (d|E) = 1/|E|. Alternatively, it is also possible to bias
towards documents that are more relevant given the original query, P (d|E) ∝
P (d|q), or just the opposite—reward documents that are the most dissimilar to
the query, assuming, that these bring in aspects that are not well described by
the keyword query, P (d|E) ∝ 1− P (d|q).

A word on pragmatic considerations before we move forward. The expanded
query models tend to be quite large, as they contain all terms that appear in the
feedback documents (the set of examples E in our case). Most of these expansion
terms have an extremely small probability assigned to them and have negligible
impact on document ranking, yet they slow down computation considerably.
Therefore, it is common practice to limit expansion terms to the set of top 10-30
words with the highest term probability (P (t|θ̂q)) as it provides a good tradeoff
between effectiveness and efficiency [4, 43].

5.2 Category-Based Modeling

Next, we consider scenarios where the move beyond term-based representations,
both for documents and for queries. We assume that a category system exists as
part of the data collection and documents are assigned to one or more categories;
a prime example for such data set is Wikipedia. As an illustration, Figure 11 lists
the Wikipedia categories assigned to the article about the movie Saving Private
Ryan. Moreover, we assume that the user provides a small number of target
categories, along with the keyword query, like it is shown in Figure 8. In reality,
category systems tend to grow quite large and are hierarchically organized. This
presents a number of challenges. First, the categorization itself is imperfect;
there might be inconsistencies, missing category assignments, documents placed
in too general or too specific categories, and so on. Second, relevant results are
not necessarily assigned to the categories provided by the user (who may not
be completely familiar with the category system). Therefore, simply filtering on
the target categories is insufficient, more robust techniques are needed.

90 K. Balog

1998 films | English-language films | 1990s drama films | 1990s war

films | Amblin Entertainment films | American war films | Best Drama

Picture Golden Globe winners | DreamWorks films | Epic films | Films

directed by Steven Spielberg | Films produced by Steven Spielberg |

Films set in France | Films set in 1944 | Films shot in the Republic

of Ireland | Films that won the Best Sound Mixing Academy Award |

Films whose cinematographer won the Best Cinematography Academy Award

| Films whose director won the Best Director Academy Award | Films

whose director won the Best Director Golden Globe | Films whose editor

won the Best Film Editing Academy Award | Operation Overlord films |

Paramount Pictures films | War epic films | War films

Fig. 11. Wikipedia categories for the movie Saving Private Ryan

A standard way of using category information is to include a separate category
similarity component in the overall ranking formula [6, 16, 22, 35]. A principled
way realizing this idea is proposed in [6], where both documents and queries have
a dual representation, one based on terms and one based categories. Formally,
each document is represented as a pair, d = (θTd , θ

C
d), where θTd is a probabil-

ity distribution over terms and θCd is a probability distribution over categories.
Similarly, the query is also represented as a pair, q = (θTq , θ

C
q). The overall

idea is illustrated in Figure 12, where the left and right sides symbolize the
query and the document, respectively, where each have a term-based (top) and
a category-based (bottom) representation, modeled as multinomial probability
distributions. A word on notation before we continue: the type of representation,
term-based or category-based, is indicated with T or C in the superscript; q and
d in the subscript stand for query and document, respectively.

The probability of a document generating the query is estimated using a
mixture of term-based and category-based components:

P (q|d) = λt · P (θTq |θTd) + (1− λt) · P (θCq |θCd), (21)

where λt is an interpolation parameter. Notice that the term-based component in
Eq. 21 is essentially what we have worked on so far, and could be computed using
Eq. 14. However, due to pragmatic reasons (see below) we need to include an
additional transformation step. For the sake of space considerations, we detail
only the term-based component. The category-based component is computed
analogously (specifically, by replacing t with c and T with C in Eqs. 22, 23,
and 24). We use KL divergence as the basis of distributional similarity:

KL(θTq ||θTd) =
∑

t

P (t|θTq) · log
P (t|θTq)
P (t|θTd)

. (22)

Semistructured Data Search 91

P
(t
|θT q

)

P
(t
|θT d

)
P

(c
|θC d

)

P
(c
|θC q

)

t

Query model Document model

Te
rm

-b
as

ed
Ca

te
go

ry
-b

as
ed

t

c

KL(θT
q ||θT

d)

c

KL(θC
q ||θC

d)

Fig. 12. A two-component model where both terms and categories are represented as
probability distributions (top vs. bottom) for both queries and documents (left vs.
right). KL divergence is used as the basis of distributional similarity.

Since KL divergence is a score (which is lower when two distributions are more
similar), we turn it into a probability using Eq. 23:

P (θTq |θTd) = zT · (maxKL(θTq ||·)−KL(θTq ||θTd)
)
, (23)

where maxKL(θTq ||·) is the maximum KL divergence score observed for query q.

Further, zT is a normalization factor set as follows:

zT = 1/
∑

d

max
(
KL(θTq ||·)−KL(θTq ||θTd)

)
. (24)

Observe that Eq. 23 ranks documents in the same order as Eq. 14 does, al-
beit they differ in the actual values assigned. This does not make a difference
when a single representation is used, but becomes an issue when term-based and
category-based components need to be combined. Simply put, this transforma-
tion ensures that the probabilities are computationally tractable and “compati-
ble;” the interested reader is referred to [6] for further details.

What remains to be defined, then, is the estimation of the ingredients for
category-based similarity. Specifically, we need to define the probability of a cat-
egory given a query, P (c|θCq), and the probability of a category given a document,

P (c|θCd). We start with the latter. Similarly to the term-based representation,
we need to employ smoothing on the document side to ensure that P (c|θCd) > 0
for all categories that might appear in the query. Analogously to the term-based
case, we smooth the maximum likelihood estimate with a background model:

P (c|θCd) = (1 − λC)PML(c|d) + λPML(c|C), (25)

92 K. Balog

where the interpolation parameter λC controls the influence of the collection
model, and can be set using guidance from Dirichlet prior smoothing (following
the intuition that documents with a richer category-based representation require
less smoothing). Further, we set

PML(c|d) = n(c, d)
∑

c′ n(c
′, d)

PML(c|C) =

∑
d n(c, d)∑

c′
∑

d n(c
′, d)

, (26)

where n(c, d) is 1 if category c is assigned to document d and 0 otherwise.
As for the probability of a category given a query, P (c|θCq), we have a number

of options. The baseline approach is to use the categories provided by the user
and assign the same importance to each:

PBL(c|θCq) =
n(c, q)

∑
c′ n(c

′, q)
, (27)

where n(c, q) is 1 if category c is present in the query and 0 otherwise. It is also
possible to use the keyword query to obtain a ranking of categories (based on
category labels or the contents of documents that belong to each category) and
take the top-ranked categories (either with equal importance or with weights set
proportional to the retrieval scores). This strategy has shown to be beneficial in
expanding the typically small set of input categories provided by the user. It is
worth pointing out that this method is applicable even when no input category
information is given by the user at all.

A particularly nice feature of this framework is that it allows for category-
based expansion analogously to the term-based case. Techniques introduced in
Section 5.1 (blind relevance feedback and sampling from example documents) can
be adopted in a straightforward way to categories. In fact, it has been shown that
category-based feedback can be more beneficial than term-based feedback [6].
There exist further possibilities specific to categories. Most notably, hierarchical
relationships between categories can also be utilized for expansion, for example,
by considering parent and/or sub-categories up to a certain depth [15, 20, 42, 48].

5.3 Further Reading

Query expansion techniques mostly fall into two main categories: global and lo-
cal. The idea of global analysis is to expand the query using global collection
statistics based, for instance, on a co-occurrence analysis of the entire collec-
tion or using domain specific background knowledge [2]. Local approaches, on
the other hand, typically use (known or assumed-to-be) relevant documents as
examples from which expansion terms are selected [39, 41]; the methods we pre-
sented in Section 5.1 fall into this category. For a comprehensive overview on
query expansion methods we refer the reader to [11]. Category-based modeling,
discussed in Section 5.2, can be seen as a variant of concept-based informa-
tion retrieval, where both documents and queries are represented using semantic
concepts, instead of or in addition to keywords [17]. The TREC Entity track
presents a scenario where the query seeks to find related entities (“Airlines that

Semistructured Data Search 93

currently use Boeing 747 planes”) and is annotated with the input entity (“Boe-
ing 747”) and with the target type (“Airline”) [5]. Later editions of the track
anchored these annotations in a knowledge base (DBpedia) [7]. Obtaining such
semantic annotations for keyword queries automatically is a topic of active re-
search, often involving methods at the intersection of information retrieval and
databases [37, 40].

6 Summary

In this paper we have looked at various ways of utilizing structure for improving
the ranking of document-based representations of objects or entities. The internal
structure of documents can effectively be captured through the use of multiple
document fields. Depending on the data source and application, these fields
might be alternative descriptions of the same content or record different aspects
of it; the two call for different field weight estimation methods. Structure, to
a certain degree, can also be captured on the query side, even without the use
of formal query languages. Users, for example, can provide target categories or
a few example documents, if it is made sufficiently effortless for them through
specialized interfaces or query assistance services. This extra information can
then be used to obtain a richer representation of the underlying information need
in the form of expanded query models. Finally, both documents and queries can
be modeled beyond the term space. We have illustrated this using categories;
this assumes a setting where documents are classified according to some category
system and the user might supplement the keyword query with a small number
of target categories. A particularly nice property of the proposed model is that
query expansion techniques developed for the term-based representation can
be adopted in a straightforward way to categories—this provides an effective
solution to handle noisy category information.

References

[1] Aslam, J.A., Montague, M.: Models for metasearch. In: Proceedings of the 24th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2001), pp. 276–284. ACM (2001)

[2] Bai, J., Nie, J.-Y.: Adapting information retrieval to query contexts. Inf. Process.
Manage. 44(6), 1901–1922 (2008)

[3] Bailey, P., Craswell, N., de Vries, A.P., Soboroff, I.: Overview of the TREC 2007
enterprise track. In: The Sixteenth Text REtrieval Conference Proceedings (TREC
2007). NIST Special Publication 500-274 (2008)

[4] Balog, K., Weerkamp, W., de Rijke, M.: A few examples go a long way: construct-
ing query models from elaborate query formulations. In: Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR 2008), pp. 371–378. ACM (2008)

[5] Balog, K., de Vries, A.P., Serdyukov, P., Thomas, P., Westerveld, T.: Overview
of the TREC 2009 entity track. In: Proceedings of the Eighteenth Text REtrieval
Conference (TREC 2009), NIST Special Publication 500-278 (February 2010)

94 K. Balog

[6] Balog, K., Bron, M., De Rijke, M.: Query modeling for entity search based on
terms, categories, and examples. ACM Trans. Inf. Syst. 29(4), 22:1–22:31 (2011)

[7] Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2011 entity track.
In: The Twentieth Text REtrieval Conference Proceedings (TREC 2011). NIST
Special Publication 500-296 (February 2012)

[8] Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Se-
mantic Web Inf. Syst. 5(3), 1–22 (2009)

[9] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: Dbpedia - a crystallization point for the web of data. Web Semant. 7(3),
154–165 (2009)

[10] Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data.
In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 83–97. Springer,
Heidelberg (2011)

[11] Carpineto, C., Romano, G.: A survey of automatic query expansion in information
retrieval. ACM Comput. Surv. 44(1), 1:1–1:50 (2012)

[12] Dalton, J., Huston, S.: Semantic entity retrieval using web queries over structured
RDF data. In: Proceedings of the 3rd International Semantic Search Workshop,
SEMSEARCH 2010 (2010)

[13] Das-Gupta, P., Katzer, J.: A study of the overlap among document representa-
tions. In: Proceedings of the 6th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 1983), pp. 106–114.
ACM (1983)

[14] de Vries, A.P., Vercoustre, A.-M., Thom, J.A., Craswell, N., Lalmas, M.: Overview
of the INEX 2007 entity ranking track. In: Fuhr, et al. (eds.) [19], pp. 245–251

[15] Demartini, G., Firan, C.S., Iofciu, T.: L3S at INEX 2007: Query expansion for
entity ranking using a highly accurate ontology. In: Fuhr, et al. (eds.) [19], pp.
252–263

[16] Demartini, G., Firan, C.S., Iofciu, T., Krestel, R., Nejdl, W.: Why finding entities
in Wikipedia is difficult, sometimes. Inf. Retr. 13(5), 534–567 (2010)

[17] Egozi, O., Markovitch, S., Gabrilovich, E.: Concept-based information retrieval
using explicit semantic analysis. ACM Trans. Inf. Syst. 29(2), 8:1–8:34 (2011)

[18] Fisher, H.L., Elchesen, D.R.: Effectiveness of combining title words and index
terms in machine retrieval searches. Nature 238, 109–110 (1972)

[19] Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.): INEX 2007. LNCS, vol. 4862.
Springer, Heidelberg (2008)

[20] Jämsen, J., Näppilä, T., Arvola, P.: Entity ranking based on category expansion.
In: Fuhr, et al. (eds.) [19], pp. 264–278

[21] Kamps, J., Mishne, G., de Rijke, M.: Language models for searching in Web cor-
pora. In: The Thirteenth Text REtrieval Conference Proceedings (TREC 2004).
NIST Special Publication 500-261 (2005)

[22] Kaptein, R., Kamps, J.: Exploiting the category structure of Wikipedia for entity
ranking. Artif. Intell. 194, 111–129 (2013)

[23] Kim, J., Croft, W.B.: Ranking using multiple document types in desktop search.
In: Proceedings of the 33rd International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR 2010), pp. 50–57. ACM (2010)

[24] Kim, J., Xue, X., Croft, W.B.: A probabilistic retrieval model for semistructured
data. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR
2009. LNCS, vol. 5478, pp. 228–239. Springer, Heidelberg (2009)

Semistructured Data Search 95

[25] Lafferty, J., Zhai, C.: Document language models, query models, and risk min-
imization for information retrieval. In: Proceedings of the 24th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Re-
trieval (SIGIR 2001), pp. 111–119. ACM (2001)

[26] Lalmas, M., Baeza-Yates, R.: Structured text retrieval. In: Modern Information
Retrieval - The Concepts and Technology Behind Search, 2nd edn. Pearson Edu-
cation Ltd., Harlow (2011)

[27] Lavrenko, V.: A Generative Theory of Relevance. The Information Retrieval Se-
ries, vol. 26. Springer, Heidelberg (2008)

[28] Lavrenko, V., Croft, W.B.: Relevance based language models. In: Proceedings of
the 24th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2001), pp. 120–127. ACM (2001)

[29] Lu, W., Robertson, S., MacFarlane, A.: Field-weighted XML retrieval based on
BM25. In: Fuhr, N., Lalmas, M., Malik, S., Kazai, G. (eds.) INEX 2005. LNCS,
vol. 3977, pp. 161–171. Springer, Heidelberg (2006)

[30] Montague, M., Aslam, J.A.: Condorcet fusion for improved retrieval. In: Proceed-
ings of the 11th International Conference on Information and Knowledge Manage-
ment (CIKM 2002), pp. 538–548. ACM (2002)

[31] Neumayer, R., Balog, K., Nørv̊ag, K.: On the modeling of entities for ad-hoc
entity search in the web of data. In: Baeza-Yates, R., de Vries, A.P., Zaragoza,
H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012.
LNCS, vol. 7224, pp. 133–145. Springer, Heidelberg (2012)

[32] Neumayer, R., Balog, K., Nørv̊ag, K.: When simple is (more than) good enough:
Effective semantic search with (almost) no semantics. In: Baeza-Yates, R., de
Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri,
F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 540–543. Springer, Heidelberg (2012)

[33] Ogilvie, P., Callan, J.: Combining document representations for known-item
search. In: Proceedings of the 26th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR 2003), pp.
143–150. ACM (2003)

[34] Ogilvie, P., Callan, J.: Hierarchical language models for XML component retrieval.
In: Fuhr, N., Lalmas, M., Malik, S., Szlávik, Z. (eds.) INEX 2004. LNCS, vol. 3493,
pp. 224–237. Springer, Heidelberg (2005)

[35] Pehcevski, J., Thom, J.A., Vercoustre, A.-M., Naumovski, V.: Entity rank-
ing in Wikipedia: utilising categories, links and topic difficulty prediction. Inf.
Retr. 13(5), 568–600 (2010)

[36] Plachouras, V., Ounis, I.: Multinomial randomness models for retrieval with doc-
ument fields. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECIR 2007. LNCS,
vol. 4425, pp. 28–39. Springer, Heidelberg (2007)

[37] Pound, J., Hudek, A.K., Ilyas, I.F., Weddell, G.: Interpreting keyword queries over
web knowledge bases. In: Proceedings of the 21st ACM International Conference
on Information and Knowledge Management (CIKM 2012), pp. 305–314. ACM
(2012)

[38] Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple
weighted fields. In: Proceedings of the 13th ACM International Conference on
Information and Knowledge Management (CIKM 2004), pp. 42–49. ACM (2004)

[39] Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The
SMART Retrieval System: Experiments in Automatic Document Processing, pp.
313–323. Prentice-Hall, Inc. (1971)

96 K. Balog

[40] Sawant, U., Chakrabarti, S.: Learning joint query interpretation and response
ranking. In: Proceedings of the 22nd International Conference on World Wide
Web (WWW 2013), pp. 1099–1110. International World Wide Web Conferences
Steering Committee (2013)

[41] Tao, T., Zhai, C.: Regularized estimation of mixture models for robust pseudo-
relevance feedback. In: Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2006),
pp. 162–169. ACM (2006)

[42] Thom, J., Pehcevski, J., Vercoustre, A.-M.: Use of Wikipedia categories in entity
ranking. In: The 12th Australasian Document Computing Symposium, ADCS
2007 (2007)

[43] Weerkamp, W., Balog, K., de Rijke, M.: Exploiting external collections for query
expansion. ACM Trans. Web 6(4), 18:1–18:29 (2012)

[44] Westerveld, T., Vries, A., Jong, F.: Generative probabilistic models. In: Blanken,
H.M., Blok, H.E., Feng, L., Vries, A.P. (eds.) Multimedia Retrieval. Data-Centric
Systems and Applications, pp. 177–198. Springer, Heidelberg (2007)

[45] Zhai, C.: Statistical language models for information retrieval: a critical review.
Found. Trends Inf. Retr. 2, 137–213 (2008)

[46] Zhai, C., Lafferty, J.: Model-based feedback in the language modeling approach
to information retrieval. In: Proceedings of the 10th International Conference on
Information and Knowledge Management (CIKM 2001), pp. 403–410. ACM (2001)

[47] Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to information retrieval. ACM Trans. Inf. Syst. 22, 179–214 (2004)

[48] Zhu, J., Song, D., Rüger, S.: Integrating document features for entity ranking. In:
Fuhr, et al. (eds.) [19], pp. 336–347

	Semistructured Data Search
	Introduction
	Scope
	Organization

	Semistructured Data
	Retrieval Framework
	Modeling Documents
	Unstructured Document Representation
	Fielded Document Representation
	Fields as Alternative Document Representations.
	Fields Representing Distinct Aspects.

	Further Reading

	Modeling Queries
	Term-Based Modeling
	Category-Based Modeling
	Further Reading

	Summary

