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ABSTRACT
Many information needs revolve around entities, which would
be better answered by summarizing results in a tabular format,
rather than presenting them as a ranked list. Unlike previous work,
which is limited to retrieving existing tables, we aim to answer
queries by automatically compiling a table in response to a query.
We introduce and address the task of on-the-y table generation:
given a query, generate a relational table that contains relevant
entities (as rows) along with their key properties (as columns).
This problem is decomposed into three specic subtasks: (i) core
column entity ranking, (ii) schema determination, and (iii) value
lookup. We employ a feature-based approach for entity ranking and
schema determination, combining deep semantic features with task-
specic signals. We further show that these two subtasks are not
independent of each other and can assist each other in an iterative
manner. For value lookup, we combine information from existing
tables and a knowledge base. Using two sets of entity-oriented
queries, we evaluate our approach both on the component level
and on the end-to-end table generation task.
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1 INTRODUCTION
Tables are popular on the Web because of their convenience for
organizing and managing data. Tables can also be useful for pre-
senting search results [20, 31]. Users often search for a set of things,
like music albums by a singer, lms by an actor, restaurants nearby,
etc. In a typical information retrieval system, the matched entities
are presented as a list. Search, however, is often part of a larger
work task, where the user might be interested in specic attributes
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Figure 1: Answering a search querywith an on-the-y gener-
ated table, consisting of core column entities E, table schema
S , and data cells V .

of these entities. Organizing results, that is, entities and their at-
tributes, in a tabular format facilitates a better overview. E.g., for
the query “video albums of Taylor Swift,” we can list the albums in
a table, as shown in Fig. 1.

There exist two main families of methods that can return a table
as answer to a keyword query by: (i) performing table search to nd
existing tables on the Web [4, 5, 19, 20, 25, 36], or (ii) assembling
a table in a row-by-row fashion [31] or by joining columns from
multiple tables [20]. However, these methods are limited to return-
ing tables that already exist in their entirety or at least partially (as
complete rows/columns). Another line of work aims to translate a
keyword or natural language query to a structured query language
(e.g., SPARQL), which can be executed over a knowledge base [29].
While in principle these techniques could return a list of tuples as
the answer, in practice, they are targeted for factoid questions or at
most a single attribute per answer entity. More importantly, they
require data to be available in a clean, structured form in a con-
solidated knowledge base. Instead, we propose to generate tables
on the y in a cell-by-cell basis, by combining information from
existing tables as well as from a knowledge base, such that each
cell’s value can originate from a dierent source.

In this study, we focus on relational tables (also referred to as
genuine tables [27, 28]), which describe a set of entities along with
their attributes [15]. A relational table consists of three main ele-
ments: (i) the core column entities E, (ii) the table schema S , which
consists of the table’s heading column labels, corresponding to en-
tity attributes, and (iii) data cells, V , containing attribute values
for each entity. The task of on-the-y table generation is dened as
follows: answering a free text query with an output table, where the
core column lists all relevant entities and columns correspond the
attributes of those entities. This task can naturally be decomposed
into three main components:

(1) Core column entity ranking, which is about identifying the
entities to be included in the core column of the table.

(2) Schema determination, which is concerned with nding out
what should be the column headings of the table, such that
these attributes can eectively summarize answer entities.

(3) Value lookup, which is to nd the values of corresponding
attributes in existing tables or in a knowledge base.
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Figure 2: Overview of our table generation approach.

The rst subtask is strongly related to the problem of entity re-
trieval [12], while the second subtask is related to the problem
of attribute retrieval [14]. These two subtasks, however, are not
independent of each other. We postulate that core column entity
ranking can be improved by knowing the schema of the table, and
vice versa, having knowledge of the core column entities can be
leveraged in schema determination. Therefore, we develop a frame-
work in which these two subtasks can be performed iteratively and
can reinforce each other. As for the third subtask, value lookup, the
challenge there is to nd a distinct value for an entity-attribute pair,
with a traceable source, from multiple sources.

In summary, the main contributions of this work are as follows:
• We introduce the task of on-the-y table generation and
propose an iterative table generation algorithm (Sect. 2).
• We develop feature-based approaches for core column entity
ranking (Sect. 3) and schema determination (Sect. 4), and
design an entity-oriented fact catalog for fast and eective
value lookup (Sect. 5).
• We perform extensive evaluation on the component level
(Sect. 7) and provide further insights and analysis (Sect. 8).

The resources developed within this study are made publicly avail-
able at https://github.com/iai-group/sigir2018-table.

2 OVERVIEW
The objective of on-the-y table generation is to assemble and
return a relational table as the answer in response to a free text
query. Formally, given a keyword query q, the task is to return a
table T = (E, S,V ), where E = 〈e1, . . . en〉 is a ranked list of core
column entities, S = 〈s1, . . . sm〉 is a ranked list of heading column
labels, andV is an n-by-mmatrix, such thatvi j refers to the value in
row i and column j of the matrix (i ∈ [1..n], j ∈ [1..m]). According
to the needed table elements, the task boils down to (i) searching
core column entities, (ii) determining the table schema, and (iii)
looking up values for the data cells. Figure 2 shows how these three
components are connected to each other in our proposed approach.

2.1 Iterative Table Generation Algorithm
There are some clear sequential dependencies between the three
main components: core column entity ranking and schema determi-
nation need to be performed before value lookup. Other than that,
the former two may be conducted independently of and parallel to
each other. However, we postulate that better overall performance

Algorithm 1: Iterative Table Generation
Data: q, a keyword query
Result: T = (E, S,V ), a result table

1 begin
2 E0 ← rankEntites(q, {});
3 S0 ← rankLabels(q, {});
4 t ← 0 ;
5 while ¬terminate do
6 t ← t + 1 ;
7 Et ← rankEntites(q, St−1);
8 St ← rankLabels(q,Et−1);
9 end

10 V ← lookupValues(Et , St );
11 return (Et , St ,V )

12 end

may be achieved if core column entity ranking and schema deter-
mination would supplement each other. That is, each would make
use of not only the input query, but the other’s output as well. To
this end, we propose an iterative algorithm that gradually updates
core column entity ranking and schema determination results.

The pseudocode of our approach is provided in Algorithm 1,
where rankEntites(), rankLabels(), and lookupValues() refer to the
subtasks of core column entity ranking, schema determination, and
value lookup, respectively. Initially, we issue the query q to search
entities and schema labels, by rankEntites(q, {}) and rankLabels(q, {}).
Then, in a series of successive iterations, indexed by t , core column
entity ranking will consider the top-k ranked schema labels from
iteration t − 1 (rankEntites(q, St−1)). Analogously, schema determi-
nation will take the top-k ranked core column entities from the
previous iteration (rankLabels(q,Et−1)). These steps are repeated
until some termination condition is met, e.g., the rankings do not
change beyond a certain extent anymore. We leave the determina-
tion of a suitable termination condition to future work and will use
a xed number of iterations in our experiments. In the nal step
of our algorithm, we look up values V using the core column en-
tities and schema (lookupValues(Et , St )). Then, the resulting table
(Et , St ,V ) is returned as output.

2.2 Data Sources
Another innovative element of our approach is that we do not
rely on a single data source. We combine information both from
a collection of existing tables, referred to as the table corpus, and
from a knowledge base. We shall assume that there is some process
in place that can identify relational tables in the table corpus, based
on the presence of a core column. We further assume that entities
in the core column are linked to the corresponding entries in the
knowledge base. The technical details are described in Sect. 6. Based
on the information stored about each entity in the knowledge base,
we consider multiple entity representations: (i) all refers to the
concatenation of all textual material that is available about the
entity (referred to as “catchall” in [12]), (ii) description is based on
the entity’s short textual description (i.e., abstract or summary), and
(iii) properties consists of a restricted set of facts (property-value
pairs) about the entity. We will use DBpedia in our experiments,
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Figure 3: Architecture of the DRRM_TKS deep semantic
matching method.

but it can be assumed, without loss of generality, that the above
information is available in any general-purpose knowledge base.

3 CORE COLUMN ENTITY RANKING
In this section, we address the subtask of core column entity ranking:
given a query, identify entities that should be placed in the core
column of the generated output table. This task is closely related to
the problem of ad hoc entity retrieval. Indeed, our initial scoring
function is based on existing entity retrieval approaches. However,
this scoring can be iteratively improved by leveraging the identied
table schema. Our iterative scoring function combines multiple
features as ranking signals in a linear fashion:

scoret (e,q) =
∑
i
wiϕi (e,q, S

t−1) , (1)

where ϕi is a ranking feature andwi is the corresponding weight.
In the rst round of the iteration (t = 0), the table schema is not yet
available, thus St−1 by denition is an empty list. For later iterations
(t > 0), St−1 is computed using the methods described in Sect. 4.
For notational convenience, we shall write S to denote the set of
top-k schema labels from St−1. In the remainder of this section, we
present the features we developed for core column entity ranking;
see Table 1 for a summary.

3.1 Query-based Entity Ranking
Initially, we only have the query q as input. We consider term-based
and semantic matching as features.

3.1.1 Term-based matching. There is a wide variety of retrieval
models for term-based entity ranking [12]. We rank document-
based entity representations using Language Modeling techniques.
Despite its simplicity, this model has shown to deliver competitive
performance [12]. Specically, following [12], we use the all entity
representation, concatenating all textual material available about a
given entity.

Table 1: Features used for core column entity retrieval.

Feature Iter. (t )

Term-based matching
ϕ1: LM (q, ea ) ≥ 0

Deep semantic matching
ϕ2: DRRM_TKS (q, ed ) ≥ 0
ϕ3: DRRM_TKS (q, ep ) ≥ 0
ϕ4: DRRM_TKS (s, ed ) ≥ 1
ϕ5: DRRM_TKS (s, ep ) ≥ 1
ϕ6: DRRM_TKS (q ⊕ s, ed ⊕ ep ) ≥ 1

Entity-schema compatibility
ϕ7: ESC (S, e ) ≥ 1

3.1.2 Deep semantic matching. We employ a deep semantic
matching method, referred to as DRRM_TKS [9]. It is an enhance-
ment of DRRM [11] for short text, where the matching histograms
are replaced with the top-k strongest signals. Specically, the entity
and the query are represented as sequences of embedding vectors,
denoted as e = [we

1 ,w
e
2 , ...,w

e
n] and q = [wq

1 ,w
q
2 , ...,w

q
m]. An n×m

matching matrixM is computed for their joint representation, by
setting Mi j = we

i · (w
q
j )
ᵀ . The values of this matrix are used as

input to the dense layer of the network. Then, the top-k strongest
signals, based on a softmax operation, are selected and fed into the
hidden layers. The output layer computes the nal matching score
between the query and entity. The architecture of DRRM_TKS is
shown in Fig. 3.

We instantiate this neural network with two dierent entity rep-
resentations: (i) using the entity’s textual description, ed , and (ii)
using the properties of the entity in the knowledge base, ep . The
matching degree scores computed using these two representations,
DRRM_TKS (q, ed ) andDRRM_TKS (q, ep ), are used as ranking fea-
tures ϕ2 and ϕ3, respectively.

3.2 Schema-assisted Entity Ranking
After the rst iteration, core column entity ranking can be assisted
by utilizing the determined table schema from the previous iteration.
We present a number of additional features that incorporate schema
information.

3.2.1 Deep semantic matching. We employ the same neural net-
work as before, in Sect. 3.1.2, to compute semantic similarity by
considering the table schema. Specically, all schema labels in S are
concatenated into a single string s . For the candidate entities, we
keep the same representations as in Sect. 3.1.2. By comparing all
schema labels s against the entity, we obtain the schema-assisted
deep features DRRM_TKS (s, ed ) and DRRM_TKS (s, ep ). Addition-
ally, we combine the input query with the schema labels, q ⊕ s , and
match it against a combined representation of the entity, ed ⊕ ep ,
where ⊕ refers to the string concatenation operation. The resulting
matching score is denoted as DRRM_TKS (q ⊕ s, ed ⊕ ep ).

3.2.2 Entity-schema compatibility. Intuitively, core column enti-
ties in a given table are from the same semantic class, for example,
athletes, digital products, lms, etc. We aim to capture their seman-
tic compatibility with the table schema, by introducing a measure
called entity-schema compatibility.

We compare the property labels of core column entities E against
schema S to build the compatibility matrix C . Element Ci j of the



Table 2: Features used for schema determination.

Feature Iter. (t )

Column population ϕ1: P (s |q) ≥ 0
ϕ2: P (s |q,E) ≥ 1

Deep semantic matching ϕ3: DRRM_TKS (s,q) ≥ 0
Attribute retrieval ϕ4: AR (s,E) ≥ 1
Entity-schema compatibility ϕ5: ESC (s,E) ≥ 1

matrix is a binary indicator between the jth schema label and the
ith entity, which equals to 1 if entity ei has property sj . To check
if an entity has a given property, we look for evidence both in the
knowledge base and in the table corpus. Formally:

Ci j =



1, if matchKB (ei , sj ) ∨matchTC (ei , sj )
0, otherwise .

where matchKB (ei , sj ) and matchTC (ei , sj ) are binary indicator
functions. The former is true if entity ei has property sj in the
knowledge base, the latter is true if there exists a table in the ta-
ble corpus where ei is a core column entity and sj is a schema
label. Then, the entity-schema compatibility score, which is used
as ranking feature ϕ7, is computed as follows:

ESC (S, ei ) =
1
|S |

∑
j
Ci j .

For example, for query “Apollo astronauts walked on the Moon”
and schema {country, date of birth, time in space, age at rst step,
...}, the ESC scores of entities Alan Shepard, Charles Duke, and Bill
Kaysing are 1, 0.85, and 0.4, respectively. The former two are Apollo
astronauts who walked on the Moon, while the latter is a writer
claiming that the six Apollo Moon landings were a hoax.

4 SCHEMA DETERMINATION
In this section, we address the subtask of schema determination,
which is to return a ranked list of labels to be used as heading
column labels (labels, for short) of the generated output table. The
initial ranking is based on the input query only. Then, this ranking
is iteratively improved by also considering the core column entities.
Our scoring function is dened as follows:

scoret (s,q) =
∑
i
wiϕi (s,q,E

t−1), (2)

where ϕi is a ranking feature with a corresponding weightwi . For
the initial ranking (t = 0), core column entities are not yet available,
thus Et−1 is an empty list. For successive iterations (t > 0), Et−1
is computed using the methods described in Sect. 3. Since we are
only interested in the top-k entities, and not their actual retrieval
scores, we shall write E to denote the set of top-k entities in Et−1.
Below, we discuss various feature functions ϕi for this task, which
are also summarized in Table 2.

4.1 Query-based Schema Determination
At the start, only the input query q is available for ranking labels.
To collect candidate labels, we rst search for tables in our table
corpus that are relevant to the query. We let T denote the set of
top-k ranked tables. Following [35], we use BM25 to rank tables

based on their textual content. Then, the column heading labels are
extracted from these tables as candidates: S = {s |s ∈ TS ,T ∈ T }.

4.1.1 Column population. Zhang and Balog [35] introduce the
task of column population: generating a ranked list of column labels
to be added to the column headings of a given seed table. We can
adapt their method by treating the query as if it was the caption
of the seed table. Then, the scoring of schema labels is performed
according to the following probabilistic formula:

P (s |q) =
∑
T ∈T

P (s |T )P (T |q) ,

where related tables serve as a bridge to connect the query q and
label s . Specically, P (s |T ) is the likelihood of the schema label given
table T and is calculated based on the maximum edit distance [16],
dist ,1 between the s and the schema labels of T:

P (s |T ) =



1, maxs ′∈TS dist (s, s
′) ≥ γ

0, otherwise .
(3)

The probability P (T |q) expresses the relevance ofT given the query,
and is set proportional to the table’s retrieval score (here: BM25).

4.1.2 Deep semantic matching. We employ the same neural net-
work architecture as in Sect. 3.1.2 for comparing labels against the
query. For training the network, we use our table corpus and treat
table captions as queries. All caption-label pairs that co-occur in an
existing table are treated as positive training instances. Negative
training instances are sampled from the table corpus by select-
ing candidate labels that do not co-occur with that caption. The
resulting matching score, DRRM_TKS (s,q), is used as feature ϕ3.

4.2 Entity-assisted Schema Determination
After the initial round, schema determination can be assisted by
considering the set of top-k core column entities, E. The set of
candidate labels, from before, is expanded with (i) schema labels
from tables that contain any of the entities in E in their core column
and (ii) the properties of E in the knowledge base.

4.2.1 Entity enhanced column population. We employ a variant
of the column population method from [35] that makes use of core
column entities:

P (s |q,E) =
∑
T

P (s |T )P (T |q,E) .

The schema label likelihood P (s |T ) is computed the same as before,
cf. Eq. (3). The main dierence is in the table relevance estimation
component, which now also considers the core column entities:

P (T |q,E) =
P (T |E)P (T |q)

P (T )2
.

Here, P (T |E) is the fraction of the core column entities covered by
a related table, i.e., |TE ∩ E |/|E |, and P (T |q) is the same as in §4.1.1.

4.2.2 Aribute retrieval. Attribute retrieval refers to the task
of returning a ranked list of attributes that are relevant given a
set of entities [14]. Using the core column entities as input, we
employ the method proposed by Kopliku et al. [14], which is a
linear combination of several features:

AR (s,E) =
1
|E |

∑
e ∈E

(
match(s, e,T )+drel (d, e )+sh(s, e )+kb (s, e )

)
.

1Note that despite the name used in [16], it is in fact a similarity measure.



The components of this formula are as follows:
• match(s, e,T ) compares the similarity between an entity and
a schema label with respect to a given table T . We take
T to be the table that is the most relevant to the query
(argmaxT ∈T P (T |q)). This matching score is the dierence
between the table match score and shadow match score:

match(s, e,T ) =match(e,T ) −match(e, shadow (a)) .

The table match score is computed by representing both the
entity and table cells Txy as term vectors, then taking the
maximum cosine distance between the two:

match(e,T ) =maxTxy ∈T cos (e,Txy ) .

For latter component, the notion of a shadow area is intro-
duced: shadow (a) is set of cells in the table that are in the
same row with e or are in the same column with the s . Then,
the shadow match score is estimated as:

match(e, shadow (a)) = max
Txy ∈ shadow (a)

cos(e,Txy ) .

• drel (d, e ) denotes the relevance of the document d that con-
tains T :

drel (e ) =
#results − rank (d )

#results
,

where #results is the number of retrieved results for entity
e and rank (d ) is the rank of document d within this list.
• sh(s, e ) corresponds to the number of search results returned
by a Web search engine to a query “〈s〉 of 〈e〉,” where s and e
are substituted with the label and entity, respectively. If the
base-10 logarithm of the number of hits exceeds a certain
threshold (106 in [14]) then the feature takes a value of 1,
otherwise it is 0.
• kb (s, e ) is a binary score indicating whether label s is a prop-
erty of entity e in the knowledge base (i.e., s ∈ ep ).

4.2.3 Entity-schema compatibility. Similar to Sect. 3.2.2, we em-
ploy the entity-schema compatibility feature for schema determi-
nation as well. As before, C is a compatibility matrix, where Ci j
denotes whether entity ei has property sj . The ESC score is then
computed as follows:

ESC (sj ,E) =
1
|E |

∑
i
Ci j .

5 VALUE LOOKUP
Having the core column entities and the schema determined, the
last component in our table generation approach is concerned with
the retrieval of the data cells’ values. Formally, for each row (entity)
i ∈ [1..n] and column (schema label) j ∈ [1..m], our task is to nd
the value Vi j . This value may originate from an existing table in
our table corpus or from the knowledge base. The challenges here
are twofold: (i) how to match the schema label sj against the labels
of existing tables and knowledge base predicates, and (ii) how to
deal with the case when multiple, possibly conicting values may
be found for a given cell.

We go about this task by rst creating a catalogue V of all
possible cell values. Each possible cell value is represented as a
quadruple 〈e, s,v,p〉, where e is an entity, s is a schema label, v is a
value, and p is provenance, indicating the source of the information.

The source may be a knowledge base fact or a particular table in
the table corpus. An entity-oriented view of this catalog is a ltered
set of triples where the given entity stands as the rst component
of the quadruple: eV = {〈s,v,p〉|〈e, s,v,p〉 ∈ V}. We select a single
value for a given entity e and schema label s according to:

score(v, e, s,q) = max
〈s ′,v,p〉∈eV
match(s,s ′)

conf (p,q) ,

where match(s, s ′) is a soft string matching function (detailed in
Sect. 6.3) and conf (p,q) is the condence associated with prove-
nance p. Motivated by the fact that the knowledge base is expected
to contain high-quality manually curated data, we set the con-
dence score such that the knowledge base is always given priority
over the table corpus. If the schema label does not match any pred-
icate from the knowledge base, then we chose the value from the
table that is the most relevant to the query. That is, conf (p,q) is
based on the corresponding table’s relevance score; see Sect. 7.3 for
the details. Notice that we pick a single source for each value rather
than aggregating evidence from multiple sources. The reason for
that is that on the user interface, we would like to display a single
traceable source where the given value originates from.

6 EXPERIMENTAL SETUP
Queries, dataset, data preprocessing methods and relevance assess-
ments are introduced in this section.

6.1 Test Queries
We use two sets of queries in our experiments:

QS-1 We consider list type queries from the DBpedia-Entity
v2 test collection [12], that is, queries from SemSearch LS,
TREC Entity, and QALD2. Out of these, we use the queries
that have at least three highly relevant entities in the ground
truth. This set contains 119 queries in total.

QS-2 The RELink Query Collection [21] consists of 600 com-
plex entity-relationship queries that are answered by entity
tuples. That is, the answer table has two or three columns
(including the core entity column) and all cell values are enti-
ties. The queries and corresponding relevance judgments in
this collection are obtained fromWikipedia lists that contain
relational tables. For each answer table, human annotators
were asked to formulate the corresponding information need
as a natural language query, e.g., “nd peaks above 6000m
in the mountains of Peru.”

For both sets, we remove stop words and perform spell correction.

6.2 Data Sources
We rely on two main data sources simultaneously: a knowledge
base and a table corpus.

6.2.1 Knowledge base. The knowledge base we use is DBpedia
(version 2015-10). We consider entities for which a short textual
description is given in the dbo:abstract property (4.6M in total).
We limit ourselves to properties that are extracted from Wikipedia
infoboxes.

6.2.2 Table corpus. We use the WikiTables corpus [3], which
contains 1.65M tables extracted from Wikipedia. The mean number



of rows is 11 and the median is 5. For columns, the mean is 5 and
the median is 4. We preprocess tables as follows. For each cell that
contains a hyperlink we check if it points to an entity that is present
in DBpedia. If yes, we use the DBpedia identier of the linked entity
as the cell’s content (with redirects resolved); otherwise, we replace
the link with the anchor text (i.e., treat it as a string).

Further, each table is classied as relational or non-relational
according to the existence of a core entity column and the size of the
table. We set the following conditions for detecting the core column
of a table: (i) the core column should contain the most entities
compared to other columns; (ii) if there are more than one columns
that have the highest number of entities, then the one with lowest
index, i.e., the leftmost one, is regarded as the core column; (iii) the
core column must contain at least two entities. Tables without a
core column or having less than two rows or columns are regarded
as non-relational. In the end, we classify the WikiTables corpus
into 973,840 relational and 678,931 non-relational tables. Based on
a random sample of 100 tables from each category, we nd that all
the sampled tables are correctly classied.

6.3 Schema Normalization
Dierent schema labels may be used for expressing the same mean-
ing, e.g., “birthday” vs. “day of birth” or “nation” vs. “country.”
For the former case, where similar terms are used, we employ a
FastJoin match [26] to normalize the strings (with stopwords re-
moved). Specically, we take the maximum edit distance as in [16]
to measure string similarity. When it exceeds a threshold of δ , we
regard them as the same label. We set δ as 0.8 which is consistent
with [16], where headings are matched for table column join. For
the latter case, where dierent terms are used, we consider predi-
cates connecting the same subject and object as synonyms. These
pairs are then checked and erroneous ones are eliminated manually.
Whenever schema labels are compared in the paper, we use their
normalized versions.

6.4 Relevance Assessments
For QS-1, we consider the highly relevant entities as the ground
truth for the core column entity ranking task. For the task of schema
determination, we annotated all candidate labels using crowdsourc-
ing. Specically, we used the CrowdFlower platform and presented
annotators with the query, three example core column entities, and
a label, and asked them to judge the relevance of that label on a
three point scale: highly relevant, relevant, or non-relevant. Each
query-entity-label triple was annotated by at least three and at most
ve annotators. The labelling instructions were as follows: a label
is highly relevant if it corresponds to an essential table column for
the given query and core column entities; a label is relevant when
it corresponds to a property shared by most core column entities
and provides useful information, but it is not essential for the given
query; a label is non-relevant otherwise (e.g., hard to understand,
not informative, not relevant, etc.). We take the majority vote to
decide the relevance of a label. Statistically, we have 7000 triples
annotated, and on average, there are 4.2 highly relevant labels, 1.9
relevant labels, and 49.4 non-relevant labels for each query. The
Fleiss’ Kappa test statistics for inter-annotator agreement is 0.61,
which is considered as substantial agreement [10]. For the value
lookup task, we sampled 25 queries and fetched values from the

table corpus and the knowledge base. We again set up a crowdsourc-
ing experiment on CrowdFlower for annotation. Given a query, an
entity, a schema label, a value, and a source (Wikipedia or DBpedia
page), three to ve annotators were asked to validate if the value
can be found and whether it is correct, according to the provided
source. Overall, 14,219 table cell values were validated. The total
expense of the crowdsourcing experiments was $560.

QS-2: Since for this query set we are given the ground truth in
a tabular format, based on existing Wikipedia tables, we do not
need to perform additional manual annotation. The main entities
are taken as the ground truth for the core column entity ranking
task, heading labels are taken as the ground truth for the schema
determination task, and the table cells (for a sample of 25 queries)
are taken as the ground truth for the value lookup task.

6.5 Evaluation Measures
We evaluate core column entity ranking and schema determination
in terms of Normalized Discounted Cumulative Gain (NDCG) at
cut-o points 5 and 10. The value lookup task is measured by Mean
Average Precision (MAP) and Mean Reciprocal Rank (MRR). To
test signicance, we use a two-tailed paired t-test and write †/‡ to
denote signicance at the 0.05 and 0.005 levels, respectively.

7 EXPERIMENTAL EVALUATION
We evaluate the three main components of our approach, core col-
umn entity ranking, schema determination, and value lookup, and
assess the eectiveness of our iterative table generation algorithm.

7.1 Core Column Entity Ranking
We discuss core column entity ranking results in two parts: (i) using
only the query as input and (ii) leveraging the table schema as well.

7.1.1 ery-based Entity Ranking. The results are reported in
top block of Table 3. The following methods are compared:

LM For term-based matching we use Language Modeling with
Dirichlet smoothing, with the smoothing parameter set to
2000, following [12]. This method is also used for obtaining
the candidate set (top 100 entities per query) that are re-
ranked by the methods below.

DRRM_TKS We train the deep matching model using 5-fold
cross-validation. We use a four-layer architecture, with 50
nodes in the input layer, two hidden layers in the feed for-
ward matching networks, and one output layer. The opti-
mizer is ADAM [13], with hinge loss as the loss function. We
set the learning rate to 0.0001 and we report the results after
50 iterations.2 We employ two instantiations of this network,
using entity descriptions (ed ) and entity properties (ep ) as
input.

Combined We combine the previous three methods, with
equal weights, using a linear combination (cf. Eq. 1). Later,
in our analysis in Sect. 8.2, we will also experiment with
learning the weights for the combination.

On the rst query set, QS-1, LM performs best of the single rankers.
Combining it with deep features results in 16% and 9% relative
improvement for NDCG@5 and NDCG@10, respectively. On QS-2,
2We also experimented with C-DSSM and DSSM. However, their overall performance
was much lower than that of DRRM_TKS for this task.



Table 3: Core column entity ranking results. The top block
of the table uses only the keyword query as input. The bot-
tom block of the table uses the table schema; Round #1–#3
rely on automatically determined schema, while the Ora-
cle method uses the ground truth schema. Statistical signif-
icance for query-based entity ranking is compared against
LM, for schema-assisted entity ranking is compared against
the Combined method.

QS-1 QS-2
Method NDCG@5 NDCG@10 NDCG@5 NDCG@10

Query-based Entity Ranking (Round #0)

LM 0.2419 0.2591 0.0708 0.0823
DRRM_TKS (ed ) 0.2015 0.2028 0.0501 0.0540
DRRM_TKS (ep ) 0.1780 0.1808 0.1089‡ 0.1083‡

Combined 0.2821† 0.2834 0.0852‡ 0.0920†

Schema-assisted Entity Ranking

Round #1 0.3012 0.2892 0.1232‡ 0.1201‡

Round #2 0.3369‡ 0.3221‡ 0.1307‡ 0.1264‡

Round #3 0.3445‡ 0.3250‡ 0.1345‡ 0.1270‡

Oracle 0.3518‡ 0.3355‡ 0.1587‡ 0.1555‡

a slightly dierent picture emerges. The best individual ranker is
DRRM_TKS using entity properties. Nevertheless, the Combined
method still improves signicantly over the LM baseline.

7.1.2 Schema-assisted Entity Ranking. Next, we also consider
the table schema for core column entity ranking. The results are
presented in the bottom block of Table 3. Note that on top of to
the three features we have used before, we have four additional
features (cf. Table 1). As before, we use uniform weight for all
features. We report results for three additional iterations, Rounds
#1–#3, where the schema is taken from the previous iteration of the
schema determination component. Further, we report on an Oracle
method, which uses the ground truth schema. In all cases, we take
the top 10 schema labels (k = 10); we analyze the eect of using
dierent k values in Sect. 8.1. These methods are to be compared
against the Combined method, which corresponds to Round #0.
We nd that our iterative algorithm is able to gradually improve
results, in each iteration, for both of the query sets and evaluation
metrics; with the exception of QS-1 in Round #1, all improvements
are highly signicant. Notice that the relative improvement made
between Round #0 and Round #3 is substantial: 22% and 86% in
terms of NDCG@5 for QS-1 and QS-2, respectively.

7.2 Schema Determination
Schema determination results are presented in two parts: (i) using
only the query as input and (ii) also leveraging core column entities.

7.2.1 ery-based Schema Determination. In the top block of
Table 4 we compare the following three methods:

CP We employ the column population method from [35] to
determine the top 100 labels for each query. Following [16],
the γ parameter for the edit distance threshold is set to 0.8.
This method is also used for obtaining the candidate label set
(top 100 per query) that is re-ranked by the methods below.

Table 4: Schema determination results. The top block of
the table uses only the keyword query as input. The bot-
tom block of the table uses the core column entities as well;
Round #1–#3 rely on automatic entity ranking, while the Or-
acle method uses the ground truth entities. Statistical signif-
icance for query-based schema determination is compared
against CP, for entity-assisted entity ranking is compared
against the Combined method.

QS-1 QS-2
Method NDCG@5 NDCG@10 NDCG@5 NDCG@10

Query-based Entity Ranking (Round #0)

CP 0.0561 0.0675 0.1770 0.2092
DRRM_TKS 0.0380 0.0427 0.0920 0.1415
Combined 0.0786† 0.0878† 0.2310‡ 0.2695‡

Entity-assisted Schema Determination

Round #1 0.1676‡ 0.1869‡ 0.3342‡ 0.3845‡

Round #2 0.1775‡ 0.2046‡ 0.3614‡ 0.4143‡

Round #3 0.1910‡ 0.2136‡ 0.3683‡ 0.4350‡

Oracle 0.2002‡ 0.2434‡ 0.4239‡ 0.4825‡

DRRM_TKS We use the same neural network architecture as
for core column entity ranking. For training the network, we
make use of Wikipedia tables. If an entity and a schema label
co-occur in an existing Wikipedia table, then we consider it
as a positive pair. Negative training instances are generated
by sampling, for each entity, a set of schema labels that do
not co-occur with that entity in any existing table. In the
end, we generate a total of 10.7M training examples, split
evenly between the positive and negative classes.

Combined We combine the above two methods in a linear
fashion, with equal weights (cf. Eq. 2). Later, in our analysis
in Sect. 8.2, wewill also experimentwith learning theweights
for the combination.

We nd that the CP performs better than DRRM_TKS, especially
on the QS-2 query set. The Combined method substantially and
signicantly outperforms both of them,with a relative improvement
of 40% and 30% over CP in terms of NDCG@5 on QS-1 and QS-2,
respectively.

7.2.2 Entity-assisted Schema Determination. Next, we incorpo-
rate three additional features that make use of core column entities
(cf. Table 2), using uniform feature weights. For the attribute re-
trieval feature (§4.2.2), we rely on the Google Custom Search API to
get search hits and use the same parameter setting (feature weights)
as in [14]. For all features, we use the top 10 ranked entities (and
analyze dierent k values later, in Sect. 8.1).

The results are shown in the bottom block of Table 4. Already
Round #1 shows a signicant jump in performance compared to
the Combined method (corresponding to Round #0). Subsequent
iterations results in further improvements, reaching a relative im-
provement of 243% and 159% for Round #3 in terms of NDCG@5
for QS-1 and QS-2, respectively. Judging from the performance
of the Oracle method, there is further potential for improvement,
especially for QS-2.



Table 5: Value lookup results.

QS-1 QS-2
Source MAP MRR MAP MRR

KB 0.7759 0.7990 0.0745 0.0745
TC 0.1614 0.1746 0.9564 0.9564
KB+TC 0.9270 0.9427 0.9564 0.9564

7.3 Value Lookup
For value lookup evaluation we take the core column entities and
schema labels from the ground truth. This is to ensure that this
component is evaluated on its own merit, without being negatively
inuenced by errors that incur earlier in the processing pipeline. In
our evaluation, we ignore cells that have empty values according
to the ground truth (approximately 12% of the cells have empty
values in the Wikitables corpus). The overall evaluation results are
reported in Table 5. We rely on two sources for value lookup, the
knowledge base (KB) and the table corpus (TC). Overall, we reach
excellent performance on both query sets. On QS-1, the knowledge
base is the primary source, but the table corpus also contributes new
values. On QS-2, since all values originate from existing Wikipedia
tables, using the knowledge base does not bring additional benets.
This, however, is the peculiarity of that particular dataset. Also,
according to the ground truth there is a single correct value for
each cell, hence the MAP and MRR scores are the same for QS-2.

8 ANALYSIS
In this section, we conduct further analysis to provide insights on
our iterative algorithm and on feature importance.

8.1 Iterative Algorithm
We start our discussion with Fig. 5, which displays the overall
eectiveness of our iterative algorithm on both tasks. Indeed, as
it is clearly shown by these plots, our algorithm performs well.
The improvements are the most pronounced when going from
Round #0 to Round #1. Performance continues to rise with later
iterations, but, as it can be expected, the level of improvement
decreases over time. The rightmost bars in the plots correspond to
the Oracle method, which represents the upper limit that could be
achieved, given a perfect schema determination method for core
column entity ranking and vice versa. We can observe that for core
column entity ranking on QS-1 (Fig. 5a), has already reached this
upper performance limit at iteration #3. For the other task/query
set combinations there remains some performance to be gained. It
is left for future work to devise a mechanism for determining the
number of iterations needed.

Next, we assess the impact of the number of feedback items
leveraged, that is, the value of k when using the top-k schema
labels in core column entity ranking and top-k entities in schema
determination. Figure 6 shows how performance changes with
dierent k values. For brevity, we report only on NDCG@10 and
note that a similar trend was observed for NDCG@5. We nd that
the dierences between the dierent k values are generally small,
with k = 10 being a good overall choice across the board.

To further analyze how individual queries are aected over iter-
ations, Table 6 reports the number of queries that are helped (↑),

Table 6: The number queries helped (∆NDCG@10≥0.05),
hurt (∆NDCG@10≤-0.05), and unchanged (remaining) for
core column entity ranking (CCER) and schema determina-
tion (SD).

CCER SD
QS-1 ↑ ↓ − ↑ ↓ −

Round #0 vs. #1 43 38 38 52 7 60
Round #0 vs. #2 50 30 39 61 5 53
Round #0 vs. #3 49 26 44 59 2 58

QS-2 ↑ ↓ − ↑ ↓ −

Round #0 vs. #1 166 82 346 386 56 158
Round #0 vs. #2 173 74 347 388 86 126
Round #0 vs. #3 173 72 349 403 103 94

hurt (↓), and remained unchanged (−). We dene change as a dif-
ference of ≥0.05 in terms of NDCG@10. We observe that with the
exception of schema determination on QS-2, the number of queries
hurt always decreases between successive iterations. Further, the
number of queries helped always increases from Round #1 to #3.

Lastly, we demonstrate how results change over the course of
iterations, we show one specic example table in Fig. 4 that is
generated in response to the query “Towns in the Republic of Ireland
in 2006 Census Records.”

8.2 Parameter Learning
For simplicity, we have so far used all features with equal weights
for core column entity ranking (cf. Eq. 1) and schema determination
(cf. Eq. 2). Here, we aim to learn the feature weights from training
data. In Tables 7 and 8 we report results with weights learned using
ve-fold cross-validation. These results are to be compared against
the uniform weight settings in Tables 3 and 4, respectively. We
notice that on QS-1, most evaluation scores are lower with learned
weights than with uniform weights, for both core column entity
ranking and schema determination. This is due to the fact that
queries in this set are very heterogeneous [12], which makes it
dicult to learn weights that perform well across the whole set.
On QS-2, according to expectations, learning the weights can yield

Figure 4: Generated table in response to the query “Towns in
the Republic of Ireland in 2006 Census Records.” Relevant
entities and schema labels are boldfaced.



(a) CCER QS-1 (b) CCER QS-2 (c) SD QS-1 (d) SD QS-2

Figure 5: Performance change across iterations for core column entity ranking (CCER) and schema determination (SD).

(a) CCER QS-1 (b) CCER QS-2 (c) SD QS-1 (d) SD QS-2

Figure 6: Impact of the cuto parameter k for Core Column Entity Ranking (CCER) and Schema Determination (SD).

Table 7: Core column entity retrieval results with parame-
ters learned using ve-fold cross-validation. In parentheses
are the relative improvements w.r.t. using uniform weights.

QS-1 QS-2
Method NDCG@5 NDCG@10 NDCG@5 NDCG@10

Round #0 0.2523 (-11%) 0.2653 (-6%) 0.1003 (+18%) 0.1048 (+14%)
Round #1 0.2782 (-8%) 0.2772 (-4%) 0.1308 (+6%) 0.1252 (+4%)
Round #2 0.3179 (-6%) 0.3180 (-1%) 0.1367 (+5%) 0.1323 (+5%)
Round #3 0.3192 (-7%) 0.3109 (-4%) 0.1395 (+4%) 0.1339 (+5%)
Oracle 0.3017 (-14%) 0.3042 (-9%) 0.1728 (+9%) 0.1630 (+5%)

up to 18% and 21% relative improvement for core column entity
ranking and schema determination, respectively.

8.3 Feature Importance
To measure the importance of individual features, we use their
average learned weights (linear regression coecients) across all
iterations. The ordering of features for core column entity rank-
ing and QS-1 is: ϕ1 (0.566) > ϕ7 (0.305) > ϕ6 (0.244) > ϕ2 (0.198)
> ϕ5 (0.127) > ϕ4 (0.09) > ϕ3 (0.0066). For QS-2 it is: ϕ7 (0.298) >
ϕ1 (0.148) > ϕ3 (0.108) > ϕ4 (0.085) > ϕ5 (0.029) > ϕ2 (−0.118) >
ϕ6 (−0.128). Overall, we nd the term-based matching (Language
Modeling) score (ϕ1) and our novel entity-schema compatibility
score (ϕ7) to be the most important features for core column entity
ranking. Turning to schema determination, on QS-1 the ordering
is: ϕ5 (0.23) > ϕ3 (0.076) > ϕ1 (−0.035) > ϕ2 (−0.072) > ϕ4 (−0.129).
For QS-2 it is: ϕ5 (0.27) > ϕ4 (0.181) > ϕ1 (0.113) > ϕ3 (0.018) >
ϕ2 (−0.083). Here, entity-schema compatibility (ϕ5) is the single
most important feature on both query sets.

9 RELATEDWORK
Research onweb tables has drawn increasing research attention.We
focus on three main related areas: table search, table augmentation,
and table mining.

Table 8: Schema determination results with parameters
learned using ve-fold cross-validation. In parentheses are
the relative improvements w.r.t. using uniform weights.

QS-1 QS-2
Method NDCG@5 NDCG@10 NDCG@5 NDCG@10

Round #0 0.0928 (+18%) 0.1064 (+21%) 0.2326 (+1%) 0.2710 (+1%)
Round #1 0.1663 (-1%) 0.2066 (+11%) 0.3865 (+16%) 0.4638 (+12%)
Round #2 0.1693 (-5%) 0.2212 (+8%) 0.3889 (+8%) 0.4599 (+11%)
Round #3 0.1713 (-10%) 0.2321 (+9%) 0.3915 (+6%) 0.4620 (+6%)
Oracle 0.1719 (-14%) 0.2324 (-5%) 0.4678 (+10%) 0.5307 (+10%)

Table search refers to the task of returning a ranked list of tables
(or tabular data) for a query. Based on the query type, table search
can be categorized as keyword-based search [4, 5, 19, 20, 25] or table-
based search [1, 7, 16, 17, 19, 30]. Zhang and Balog [36] propose a
set of semantic features and fusion-based similarity measures [34]
for table retrieval with respect to a keyword query. Focusing on
result diversity, Nguyen et al. [19] design a goodness measure for
table search and selection. There are some existing table search en-
gines, e.g., Google Fusion Tables [4]. Table search is often regarded
as a fundamental step in other table related tasks. For example,
Das Sarma et al. [7] take an input table to search row or column
complement tables whose elements can be used for augmenting a
table with additional rows or columns.

Table augmentation is about supplementing a table with addi-
tional elements, e.g., new columns [2, 4, 7, 16, 30, 33]. Zhang and
Balog [35] propose the tasks of row and column population, to
augment the core column entity set and column heading labels.
They capture relevant data from DBpedia and the WikiTables cor-
pus. Search based on attributes, entities and classes is dened as
relational search, which can be used for table column augmenta-
tion. Kopliku et al. [14] propose a framework to extract and rank
attributes from web tables. Data completion refers to the problem
of lling in empty table cells. Yakout et al. [30] address three core



tasks: augmentation by attribute name, augmentation by example,
and attribute discovery by searching similar tables. Each of these
tasks is about extracting table cell data from existing tables. In case
that no existing values are captured, Ahmadov et al. [1] introduce a
method to extract table values from related tables and/or to predict
them using machine learning methods.

Table mining is to explore and utilize the knowledge contained
in tables [3, 5, 22, 25, 32]. Munoz et al. [18] recover Wikipedia ta-
ble semantics and store them as RDF triples. A similar approach
is taken in [5] based on tables extracted from a Google crawl. In-
stead of mining the entire table corpus, a single table stores many
facts, which could be answers to questions. Given a query, Sun et al.
[24] identify possible entities using an entity linking method and
represent them as a two-node graph question chain, where each
node is an entity. Table cells of the KB table are decomposed into
relational chains, which are also two-node graphs connecting two
entities. The task then boils downing to matching question and
table cell graphs using a deep matching model. A similar task is
addressed by Yin et al. [32] using a full neural network. Information
extracted from tables can be used to augment existing knowledge
bases [8, 23]. Another line of work concerns table annotation and
classication. By mining column content, Zwicklbauer et al. [37]
propose a method to annotate table headers. Studying a large num-
ber of tables in [6], a ne-grained table type taxonomy is provided
for classifying web tables.

10 CONCLUSION
We have introduced the task of on-the-y table generation, which
aims to answer queries by automatically compiling a relational
table in response to a query. This problem is decomposed into three
specic subtasks: (i) core column entity ranking, (ii) schema deter-
mination, and (iii) value lookup. We have employed a feature-based
approach for core column entity ranking and schema determination,
combining deep semantic features with task-specic signals. We
have further shown that these two subtasks are not independent of
each other and have developed an iterative algorithm, in which the
two reinforce each other. For value lookup, we have entity-oriented
fact catalog, which allows for fast and eective lookup from mul-
tiple sources. Using two sets of entity-oriented queries, we have
demonstrated the eectiveness of our method. In future work, we
wish to consider more heterogeneous table corpus in addition to
Wikipedia tables, i.e., arbitrary tables from the Web.
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