
SmartTable: A Spreadsheet Program with Intelligent Assistance
Shuo Zhang

University of Stavanger
shuo.zhang@uis.no

Vugar Abdul Zada
University of Stavanger
v.abdulzada@stud.uis.no

Krisztian Balog
University of Stavanger
krisztian.balog@uis.no

ABSTRACT
We introduce SmartTable, an online spreadsheet application that
is equipped with intelligent assistance capabilities. With a focus
on relational tables, describing entities along with their attributes,
we oer assistance in two avors: (i) for populating the table with
additional entities (rows) and (ii) for extending it with additional
entity attributes (columns). We provide details of our implemen-
tation, which is also released as open source. The application is
available at http://smarttable.cc.

CCS CONCEPTS
• Information systems→Environment-specic retrieval;Users
and interactive retrieval; Recommender systems; Probabilistic re-
trieval models;

KEYWORDS
Table completion; intelligent table assistance; semantic search

ACM Reference Format:
Shuo Zhang, Vugar Abdul Zada, and Krisztian Balog. 2018. SmartTable: A
Spreadsheet Program with Intelligent Assistance. In SIGIR ’18: The 41st Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, July 8-12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3209978.3210171

1 INTRODUCTION
Tables are a powerful, eective, and easy-to-use tool for both visual
organization and manipulation of data. Tables can be found in vast
quantities on the Web, and spreadsheet programs are among the
most commonly used desktop applications. Our objective is to equip
spreadsheet programs with intelligence assistance capabilities, to
aid users while working with tables. In this paper, we focus on one
particular type of tables, known as relational tables [8, 9]. Relational
tables describe a set of entities along with their attributes. We
shall refer to the column containing the entities as the core column.
Typically, it is either the leftmost table column or the second column
from the left, in case row sequence numbering is used. The heading
labels of the table refer to particular attributes, while data cells hold
the values of those attributes. It is also assumed that the table is
given a title (caption). See Figure 1 for an illustration.

There exists a number of online tools and resources for table-
related tasks, such as table search (Google Fusion Tables [3] and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5657-2/18/07.
https://doi.org/10.1145/3209978.3210171

Highest-grossing films

Title Worldwide gross Year

Avatar

Peak

Titanic

Star Wars: The Force Awakens
Jurassic World

$2,787,965,087

$2,187,463,944

$2,068,223,624
$1,671,713,208

2009

1997

2015
2015

1

1

3
3

E

T

L

The Avengers $1,518,812,988 2012 3

Furious 7 $1,516,045,911 2015 4

Rank

1

2

3
4

5

6

c

Figure 1: Example of a relational tableT , where c is the table
caption, E denotes the core column entities E = {e1, . . . , en },
and L is the set of column labels L = {l1, . . . , lm }.

WikiTables [1]), question answering [6], and entity linking in ta-
bles [1]. To the best of our knowledge, our system, called SmartTable,
is the rst online spreadsheet program that provides intelligent ta-
ble content recommendation. Specically, our application is capable
of providing two kinds of assistance: (i) recommending additional
entities, from an underlying knowledge base, to be added to the
core column (row population) and (ii) recommending additional
entity attributes to be included as columns (column population).
Such recommendations are particularly useful in scenarios with an
exploratory or recall-oriented nature, i.e., when the user does not
have a very clear idea beforehand as to what should be included
in the table. Additionally, SmartTable also provides regular table
operations, such as adding, deleting, and moving rows and columns,
editing cells, and supporting various value types (entities, numbers,
currencies, dates, etc.).

Both types of assistance, that is, row and column population, are
based on probabilistic models that we developed in prior work [10].
The main contributions of this paper are twofold. First, we integrate
the above assistance functionality into an online spreadsheet appli-
cation. Second, we describe the task-specic indexing structures
employed, and evaluate the eciency of our implementation in
terms of response time. SmartTable is implemented using a HTML5
front-end and a Python+ElasticSearch back-end. It uses DBpedia
as the underlying knowledge base and a corpus of 1.6M tables ex-
tracted from Wikipedia. The implementation is made open source
at https://github.com/iai-group/SmartTable and the application is
available online at http://smarttable.cc.

2 OVERVIEW
In this section, we provide an overview of the functionality of the
SmartTable application, by walking through the process of creating
a table from scratch.

• Initially, we start with an empty table, with the table caption,
core column entities, column labels, and cell values waiting
to be lled. The user is expected to add a few entities and
column labels rst, along with an optional table caption, to

http://smarttable.cc
https://doi.org/10.1145/3209978.3210171
https://doi.org/10.1145/3209978.3210171
https://github.com/iai-group/SmartTable
http://smarttable.cc

SIGIR’18, July 8–12, 2018, Ann Arbor, MI, USA Shuo Zhang, Vugar Abdul Zada, and Krisztian Balog

supply the system with some data to base recommendations
on. We shall refer to this (incomplete) table as the seed table.
See Fig. 2a.

• When adding entities to the core column, the user is pre-
sented with a ranked list of suggestions. Additionally, the
user can search the underlying knowledge base for entities.
See Fig. 2b.

• When adding new columns, the user needs to specify the
data type for that column (which can be one of entity, text,
date, number, currency, or percentage) and provide a label
for that column. For the latter, a ranked list of suggestions
are oered, along with a search box to search for additional
labels. See Fig. 2c.

3 METHODS
In this section, we introduce the methods underlying the assistance
functionality. We refer to Fig. 1 for the notation used for the various
table elements. As for the data, we employ a table corpus (TC)
extracted from Wikipedia and use DBpedia as the knowledge base
(KB); further details about the datasets are given in Sect. 4.1.

3.1 Row population
Row population is the task of generating a ranked list of entities
to be added to the core column of a given seed relational table.
It is closely related to the task of entity set expansion [2, 5, 7],
which is about expanding a seed entity set with additional instances.
The main dierence between row population and entity entity set
expansion is that we can also leverage additional data from the
seed table as input, not only the core column entities. The row
population task is split into two sub-tasks, which are candidate
selection and ranking entities, respectively.

3.1.1 Candidate selection. We identify candidate entities using
both the knowledge base and the table corpus. From the knowledge
base, we take entities that share the assigned semantic categories
with those of the seed entities. From the table corpus, we rst nd
tables similar to the seed table, based on table caption, core column
entities, and column heading labels. Then, we take the core column
entities from those similar tables as candidates.

3.1.2 Ranking entities. We implement the probabilistic model
proposed in [10], which is a multi-conditional probability:

P(e |E,L, c) ∝ P(e |E)P(L|e)P(c |e) ,

where P(e |E) is entity similarity, P(L|e) denotes column labels like-
lihood, and P(c |e) is caption likelihood.

Entity similarity is estimated using

P(e |E) = λEPKB (e |E) + (1 − λE)PTC (e |E) ,

where PKB (e |E) is the average Jaccard similarity between the
candidate entity e and each seed entity e ′ ∈ E, and PTC (e |E)
is fraction of tables in the table corpus that contain both
the seed and candidate entities out of the number of tables
containing the seed entities.

Title: Population growth of European cities

Helsinki
Oslo
Stavanger

1
2
3
4

Finland
Norway
Norway

0.12%
3.00%
0.50%

City Country Population growth

(a) Seed table with some initial data.

Title: Population growth of European cities

Raseborg

Rønne

Haven ports

Sola

Jämsä

Search...

Helsinki
Oslo
Stavanger

1
2
3
4

Finland
Norway
Norway

0.12%
3.00%
0.50%

City Country Population growth

(b) Row population assistance.

Date

Language

Continent

Capital

Venue/Event

Title: Population growth of European cities

Column NameHelsinki
Oslo
Stavanger

1
2
3
4

Finland
Norway
Norway

0.12%
3.00%
0.50%

City Country Population growth

(c) Column population assistance.

Figure 2: Screenshots from the SmartTable system.

Column labels likelihood considers the table corpus and is
estimated using a Dirichlet-smoothed language model:1

P(L|e) =
∑
l ∈L

∏
t ∈l

t f (t , e) + µP(t |θ)

|e | + µ
,

1In our original approach [10] this estimate was a two-component mixture. Due to
eciency considerations, we use a simplied version here. The relative dierence in
terms of eectiveness is below 5%.

SmartTable: A Spreadsheet Program with Intelligent Assistance SIGIR’18, July 8–12, 2018, Ann Arbor, MI, USA

where t f (t , e) is the term frequency of t in the column labels
of tables containing e and |e | is the sum of all term frequen-
cies for e . The collection language model P(t |θ) is computed
based on the column labels of all tables in TC.

Caption likelihood is a two-component mixture:

P(c |e) =
∏
t ∈c

(
λcPKB (t |θe) + (1 − λc)PTC (t |e)

)
,

where the KB component is estimated using a Dirichlet-
smoothed entity language model. The TC component is com-
puted as PTC (t |e) = #(t , e)/#(e), where #(t , e) is the number
of tables in the table corpus containing entity e in the core
column and term t in the table caption, and #(e) is the total
number of tables contaning e .

3.2 Column population
Column population is the task of generating a ranked list of column
labels to be added to the column headings of a given seed table. It
is also implemented as a sequence of two steps: candidate selection
and column label ranking.

3.2.1 Candidate selection. Candidate labels are obtained from
related tables. To nd related tables, we use (i) the table caption, (ii)
table entities, and (iii) seed column heading labels as queries. From
the matching tables, column labels are extracted as candidates.

3.2.2 Ranking column labels. The related tables, identied in the
candidate selection stage, are also utilized in the ranking step. Ac-
cording to the model in [10], the probability of a candidate column
label is given by:

P(l |E, c,L) =
∑
T

P(l |T)P(T |E, c,L) ,

where T represents a related table, P(l |T) is the label’s likelihood
given T , and P(T |E, c,L) expresses that table’s relevance. The prob-
ability P(l |T) is set to 1 if the candidate label l is present in table T
and is 0 otherwise. The relevance of a table is estimated as:

P(T |E, c,L) ∝ P(T |E)P(T |c)P(T |L) ,

where P(T |E) denotes entity coverage, P(T |c) is caption likelihood,
and P(T |L) is the column labels likelihood.

Entity coverage is the overlap of core column entities in the
seed table and in T : P(T |E) = |TE ∩ E |/|E |.

Caption likelihood is estimated using term-based similar-
ity between the seed table’s caption and the content of T :
P(T |c) ∝ sim(Tc , c). Here, we employ BM25 scoring.

Column labels likelihood is the overlap between labels of
the seed table and those of T : P(T |L) = |TL ∩ L|/|L|.

4 IMPLEMENTATION
In this section, we describe the datasets used and indices built, along
with technical details of our implementation.

4.1 Datasets
We rely on two data sources: a table corpus and a knowledge base.
The knowledge base is DBpedia, version 2015-10.2 We lter out
entities that do not have a short textual description (abstract). After
2http://wiki.dbpedia.org/dbpedia-dataset-version-2015-10

Figure 3: Example entry from the entity index.

ltering, we are left with a total of 4.6M entities. As for the table
corpus, we use the WikiTables collection [1], which comprises of
1.65M tables, extracted from Wikipedia. We preprocess tables as
follows. Entities are marked up in the original table with hyperlinks.
If the link points to an entity that exists in DBpedia, we replace
that link with the corresponding entity identier. Otherwise, we
replace the link with the anchor text.

4.2 Indices
We build the following inverted indices:

Table index It contains 1.65M Wikipedia tables (6.4GB). For
each table, the following elds are stored: page title, section
title, table caption, column labels, table data, and core column
entities.

Entities It contains 4.6M DBpedia entities (2GB). For each en-
tity, we store its canonical name (label), and the list and
number of categories it is assigned to. See Fig. 3 for an ex-
ample.

Categories We use Wikipedia’s category system, comprising
of around 1M categories. For each category, we store the
list of entities that are assigned to that category. This index
occupies 2GB.

4.3 Implementation
SmartTable is a web application that is comprised of a HTML5
front-end and a back-end based on Python and Elasticsearch.

4.3.1 Front-end. The front-end stack is made up of HTML, CSS,
and JavaScript (ECMAScript6 standard). We build on a third-party
JavaScript spreadsheet framework called Handsontable,3 which
provides a rich set of functionality for tables, including sorting, con-
ditional formatting, contextual menus, moveable and resizable rows
and column, etc. Additionally, we utilize the Gulp.js, Babel.js,
and Node.js JavaScript libraries.

3https://handsontable.com/

http://wiki.dbpedia.org/dbpedia-dataset-version-2015-10
https://handsontable.com/

SIGIR’18, July 8–12, 2018, Ann Arbor, MI, USA Shuo Zhang, Vugar Abdul Zada, and Krisztian Balog

Figure 4: Overview of the application front-end.

For development, we follow the MVC (Model View Controller)
software architecture pattern. The system is divided into self-conta-
ined components that are easy to debug and maintain, with loose
coupling and modularity between the fundamental parts. Figure 4
provides an overview. At the center of front-end lies the TableCon-
tainer class, connecting the following components:

• Handontable.js: Third party JavaScript spreadsheet frame-
work.

• TableViewManager.js: Smart Assistant view controller.
• TableModel.js: Provides storage and accessibility to all core
column entities and column heading labels.

• RestClient.js: Communication component, which is respon-
sible for request sending and response provision via the
respective callback calls.

4.3.2 Back-end. The back-end consists of two parts: a web ser-
ver and a recommendation engine. The main role of the former is
to connect the front-end spreadsheet application (client) with the
recommendation engine. The web server is implemented in Python,
using the Flask framework.4 Communication is done over HTTP,
with request and response messages encoded in JSON format. The
recommendation engine is responsible for generating the ranked
list of suggestions (entities and column labels). It uses Elasticsearch
as the underlying indexing and retrieval engine. All indices are
built using the Nordlys toolkit [4].5

5 EVALUATION
In previous work [10], we have performed an extensive evaluation
of the row and column population methods in terms of eectiveness.
Here, we evaluate our system in terms of eciency. We measure
response time as the time elapsed between receiving the request
and sending o the response on the back-end, i.e., net computation
time without the network overhead. Using 10 random tables, we
vary the number of core column entities (seed entities) and the
number of heading column labels (seed labels). The measurements

4http://ask.pocoo.org/
5http://nordlys.cc

(a) Row population (b) Column population

Figure 5: Performance in terms of response time.

are repeated 10 times and averages are reported in Figs. 5a and 5b.
We can observe that, in both cases, response time grows linearly
with the size of the input. For row population, the response time is
beyond 250ms, even with the largest input size, which is considered
very acceptable. For column population, responses are a magnitude
slower. This is due to the fact that we consider all related tables in
our scoring formula. Limiting the computations to the top-k most
similar tables may provide a solution; it is left for future work to
nd a k value that provides a good trade-o between eectiveness
and eciency.

6 CONCLUSION AND FUTUREWORK
We have introduced SmartTable, an online spreadsheet application
that is equipped with smart assistance capabilities. Specically, we
aid users working with relational tables by suggesting them addi-
tional entities and column heading labels to be included in the table.
In future work, we consider diversifying recommendations and
plan to extend the scope of content recommendation to data cells
as well, by suggesting possible values for them. Furthermore, we
intend to integrate table search and table generation functionality,
which we developed in recent work [11, 12].

REFERENCES
[1] Chandra Sekhar Bhagavatula, ThanaponNoraset, andDougDowney. 2015. TabEL:

Entity Linking in Web Tables. In Proc. of ISWC ’15. 425–441.
[2] Marc Bron, Krisztian Balog, and Maarten de Rijke. 2013. Example Based Entity

Search in the Web of Data. In Proc. of ECIR ’13. 392–403.
[3] Michael J. Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data Integra-

tion for the Relational Web. Proc. of VLDB Endow. 2 (2009), 1090–1101.
[4] FaeghehHasibi, Krisztian Balog, Darío Garigliotti, and Shuo Zhang. 2017. Nordlys:

A Toolkit for Entity-Oriented and Semantic Search. In Proc. of SIGIR ’17. 1289–
1292.

[5] Yeye He and Dong Xin. 2011. SEISA: set expansion by iterative similarity aggre-
gation. In Proc. of WWW ’11. 427–436.

[6] Panupong Pasupat and Percy Liang. 2015. Compositional Semantic Parsing on
Semi-Structured Tables. In Proc. of ACL ’15. 1470–1480.

[7] Chi Wang, Kaushik Chakrabarti, Yeye He, Kris Ganjam, Zhimin Chen, and
Philip A. Bernstein. 2015. Concept Expansion Using Web Tables. In Proc. of
WWW ’15. 1198–1208.

[8] Yalin Wang and Jianying Hu. 2002. Detecting Tables in HTML Documents. In
Proc. of DAS ’02. 249–260.

[9] Yalin Wang and Jianying Hu. 2002. A Machine Learning Based Approach for
Table Detection on the Web. In Proc. of WWW ’02. 242–250.

[10] Shuo Zhang and Krisztian Balog. 2017. EntiTables: Smart Assistance for Entity-
Focused Tables. In Proc. of SIGIR ’17. 255–264.

[11] Shuo Zhang and Krisztian Balog. 2018. Ad Hoc Table Retrieval using Semantic
Similarity. In Proc. of WWW ’18. 1553–1562.

[12] Shuo Zhang and Krisztian Balog. 2018. On-the-y Table Generation. In Proc. of
SIGIR ’18.

http://flask.pocoo.org/
http://nordlys.cc

	Abstract
	1 Introduction
	2 Overview
	3 Methods
	3.1 Row population
	3.2 Column population

	4 Implementation
	4.1 Datasets
	4.2 Indices
	4.3 Implementation

	5 Evaluation
	6 Conclusion and future work
	References

