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Abstract. We describe our participation in the INEX 2008 Entity Ranking track.
We develop a generative language modeling approach for the entity ranking and
list completion tasks. Our framework comprises the following components: (i)
entity and (ii) query language models, (iii) entity prior, (iv) the probability of
an entity for a given category, and (v) the probability of an entity given another
entity. We explore various ways of estimating these components, and report on
our results. We find that improving the estimation of these components has very
positive effects on performance, yet, there is room for further improvements.

1 Introduction

The Enitity Ranking track of this year’s INEX features three tasks: entity ranking, list
completion, and entity relation search [3]. In our participation, we focus on the first and
second tasks, leaving entity relation search for coming years. Both tasks (entity rank-
ing and list completion) are aimed at retrieving entities from a semi-structured docu-
ment collection. The document collection at hand is Wikipedia [4], and an entity is a
Wikipedia article by definition.

The entity ranking task aims at retrieving entities given a certain topic and Wikipedia
category: the goal is to identify the entities that are relevant given the topic and fit within
the given category. The list completion task is slightly different and aims at adding en-
tities of the same type to a small sample set of entities. Again, we also have the topic
and category available, but as additional information we get one or more entities as
examples.

In our participation we use a generative language modeling approach to model
both tasks. This approach has been successfully applied in many information retrieval
tasks [1, 5, 7, 8, 10]. Language models are attractive because of their foundations in sta-
tistical theory, the great deal of complementary work on language modeling in speech
recognition and natural language processing, and the fact that very simple language
modeling retrieval methods have performed quite well empirically.

A large portion of this paper is directed to the modeling of entity ranking and the
estimation of the various components this framework offers us. We submitted a total of
six runs, again with a focus on the entity ranking task (four runs).

The remainder of this paper introduces the modeling of the entity ranking task in
Section 2, and of the list completion task in Section 3. Next, we discuss the estimation
of the various components of both models in Section 4 and the experimental setup



in Section 5. The submitted runs (Section 6) and their results and discussion of these
results (Section 7) follow, and we conclude in Section 8.

2 Modeling Entity Ranking

Entities are ranked by their probability of being relevant given a query q and a set of
categories C, that is P (e|q, C). We assume that q and C are conditionally independent
and, moreover, that each of the categories c ∈ C are mutually independent. Formally:

P (e|q, C) = P (e|q) · P (e|C) (1)

= P (e|q) ·
∏
c∈C

P (e|c).

To estimate the probability of an entity given the query P (e|q), we apply Bayes’ rule
and drop the denominator P (q) which is constant for all entities and, thus, does not
influence the ranking:

P (e|q) ∝ P (q|e) · P (e). (2)

Here, P (q|e) expresses the probability that q is generated by entity e, and P (e) is the
a priori probability of an entity being relevant (independent of the query). For the sake
of simplicity, P (e) is assumed to be uniform, and is not included in the equations from
now onwards.

We infer an entity model for each entity e, such that the probability of a term given
the entity model is P (t|θe). This model is then used to predict how likely the entity
would produce query q. Each query term is assumed to be sampled identically and inde-
pendently. Thus, the query likelihood is obtained by taking the product of the individual
term probabilities across all terms in the query:

P (q|θe) =
∏
t∈q

P (t|θe)n(t,q), (3)

where n(t, q) denotes the number of times t is present in q. Putting together our choices
so far (Eqs. 1, 2, and 3) we obtain the following:

P (e|q, C) =
∏
t∈q

P (t|θe)n(t,q) ·
∏
c∈C

P (e|c). (4)

For computational reasons, we move to the log domain, and use the following formula
for ranking entities:

logP (e|q, C) ∝

(∑
t∈q

P (t|θq) · logP (t|θe)

)
+
∑
c∈C

logP (e|c). (5)

Note that n(t, q) has been replaced with P (t|θq), where θq is referred to as the query
model. This allows us more flexible weighting of query terms. Three important compo-
nents remain to be defined: the entity model θe, the query model θq , and the probability
of an entity given a category P (e|c). These will be introduced in the following sections.



3 Modeling List Completion

The list completion task is modeled similarly to the entity ranking task, with the addition
that the probability of the entity is also conditioned on a set of example entities, E.
We assume that example entities are conditionally independent from the query and the
categories, as well as mutually independent from each other. Formally:

P (e|q, C,E) = P (e|q, C) ·
∏
e′∈E

P (e|e′). (6)

Again, we perform this computation in the log domain:

logP (e|q, C,E) = logP (e|q, C) +
∑
e′∈E

logP (e|e′). (7)

The estimation of P (e|q, C) has already been discussed in Section 2. A new component
to be defined is the probability of an entity e given entity e′: P (e|e′). In other words,
this probability expresses the similarity of two entities.

4 Estimating the Components

In this section we detail how various components of the models introduced in the pre-
vious sections are estimated. Specifically, we discuss the implementation of the entity
model θe, the query model θq , the probability of an entity given a set of categories
P (e|C), and finally, the probability of an entity given another entity P (e|e′).

4.1 Entity Model

The entity is represented as a multinomial probability distribution over terms. To esti-
mate P (t|θe) we smooth the empirical entity model with the background collection to
prevent zero probabilities:

P (t|θe) = (1− λe) · P (t|e) + λe · P (t) (8)

Since entities correspond to Wikipedia articles, this way of modeling an entity is iden-
tical to constructing a smoothed document model for each Wikipedia page. The choice
of the smoothing parameter λe is discussed in Section 5.

4.2 Query Model

Our baseline query model P (t|θq) is set to n(t, q) · |q|−1, where n(t, q) is the number of
occurrences of term t in query q, and |q| is the query length. Essentially, the probability
mass is distributed uniformly across query terms. Since this representation of the query
is quite sparse, we would like to add more terms to the original query. By mixing new
terms and original query terms, we end up with the following equation:

P (t|θq) = (1− λq) · P (t|q̂) + λq · P (t|q), (9)



where P (t|q̂) is the probability of the term given the expanded query.
Balog et al. [2] introduce various methods for constructing expanded query models

by sampling terms from a set of example documents (complementing the textual query).
Based on the information provided with the topic statement, we have three straightfor-
ward ways of applying these methods to our current scenario, by (i) treating all entities
belonging to the target categories as examples (both for entity ranking and list com-
pletion), (ii) employing a blind-relevance feedback approach, in which we perform a
baseline run and look at the categories which are assigned to the 10 highest-ranked en-
tities (category feedback for entity ranking), or (iii) using the example entities (only
list completion). Specifically, we use the best performing method, maximum likelihood
(ML), from [2] to estimate the expanded query model P (t|q̂).

4.3 Entity-Categories Probability

The probability of an entity e given a set of target categories C, P (e|C), is computed
as follows. Let cat(e) denote the set of categories e is assigned to. The overlap ratio
between cat(e) and the set of target categories C is used as an estimate of P (e|C):

P (e|C) =
|cat(e) ∩ C|
|C|

, (10)

where |C| is the size of the set of target categories. We experiment further with this way
of estimating P (e|C), by introducing a parameter δ to control the weight of the overlap
between the two sets C and cat(e) and dropping the term in the denominator:

P (e|C) ∝ δ · |cat(e) ∩ C|. (11)

Based on initial experiments we set δ = 6.
Further, we hypothesize that the target categories for each topic, as used in Eqs. 10

and 11, are not exhaustive. Therefore, in order to amend this set of categories, we apply
a simple expansion strategy. We leverage the hierarchical structure of Wikipedia cate-
gories, by expanding the set of target categories with their subcategories, up to certain
depth. Based on preliminary experiments, we set the maximum depth to three.

4.4 Entity-Entity Probability

Our model for the list completion task involves the estimation of the similarity between
two entities. This is expressed as P (e|e′), the probability of an entity e given another
entity e′ (see Eq. 6). We estimate this probability based on set overlap between the
categories assigned to each of the entities. To this end, we employ a standard set-based
similarity measure, Dice’s coefficient, calculated as follows:

P (e|e′) =
2 · |cat(e) ∩ cat(e′)|
|cat(e)|+ |cat(e′)|

, (12)

where cat(e) and cat(e′) are the set of categories assigned to entities e and e′, respec-
tively.



5 Experimental Setup

5.1 Document Representation

Besides representing the entity (Wikipedia page) by its entire textual content (referred
to as full representation), we opted for a second representation. Assuming that most
valuable information on a Wikipedia page is presented at the beginning of the article, we
select only the first paragraph of each article. This paragraph is the new representation
of the entity (refered to as paragraph representation). For the sake of comparability of
runs, we use the full representation in almost all cases.

5.2 Document Preprocessing

Document preprocessing consisted of removing stopwords only. Besides the “standard”
English stopwords, we added several Wikipedia-specific stopwords to the stopword list
(e.g. disambiguation, category, and stub).

5.3 Smoothing Parameter

For the smoothing parameter λe in Eq. 8, we set λe equal to |e|
β+|e| , where |e| is the

length of the entity (i.e., the number of terms in the entity’s representation). Essentially,
the amount of smoothing is proportional to the length of the entity (and is like Bayes
smoothing with a Dirichlet prior [6]). If there is very few content available for the
entity (i.e., the corresponding article is very short) then the model of the entity is more
uncertain, leading to a greater reliance on the background probabilities. We set β to be
the average entity length, i.e. β = 409 for the full representation and β = 42 for the
paragraph representation.

5.4 Query Modeling Parameter

For the construction of the new query model (Eq. 9), we need to set λq and decide on
the number of terms in the new query. For the entity ranking task, in which we select
our expansion terms from the category feedback approach, we set λq = 0.5 and select
the 20 terms with the highest probability. For the list completion task we set λq = 0.2
and again select the top 20 terms to be included in the new query.

6 Submitted Runs

This section lists our submitted runs (six in total) and the configuration used for each
(note that all runs use the full representation, unless stated otherwise). For the entity
ranking task the following four runs were submitted:

6 UAms ER T baseline: Our baseline run using Eq. 3.
3 UAms ER TC overlap: Overlap run using Eq. 5; we estimate P (e|C) as in Eq. 11,

and use an expanded category set C up to depth three.



4 UAms ER TC cat-exp: Expanded overlap run; similar to run 3 UAms ER T overlap,
except that we model the query according to Eq. 9, where expansion terms are se-
lected using the category feedback method. We select the top 2 categories and use
the entities within these categories as examples.

1 UAms ER TC mixture: Mixture run; we construct two runs using Eq. 5, one on
the full representation and one on the paragraph representation. Each run estimates
P (e|C) as in Eq. 11, and uses an expanded category set C up to depth three (para-
graph representation) or two (full representation). Both runs are combined using a
linear rank combination with a weight of 0.1 for the paragraph representation and
0.9 for the full representation.

The remaining two runs were submitted for the list completion task:

5 UAms LC TE baseline: Our baseline run using Eq. 7; we model the query accord-
ing to Eq. 9 and select expansion terms from the provided example entities.

2 UAms LC TCE dice: Our overlap run; similar to run 5 UAms LC T baseline. We
estimate P (e|e′) using Eq. 12 and P (e|C) as in Eq. 11, and use an expanded cate-
gory set C up to depth two.

7 Results and Discussion

We report on the results of our submissions and the best performing run among all
submitted runs for each task. The metric used for measuring performance is xinfAP [9].
Significance is tested against our best performing run, using a two-tailed paired t-test
and α = .05.

Run xinfAP
1 FMIT ER TC nopred-cat-baseline-a1-b8 0.341
3 UAms ER TC overlap 0.253
4 UAms ER TC cat-exp 0.232
1 UAms ER TC mixture 0.222 *
6 UAms ER T baseline 0.111

Table 1. Results for the entity ranking task. Significant differences against our best performing
run are marked with *.

Table 1 presents the results for the entity ranking task, in decreasing order of perfor-
mance. Our main finding are as follows. Taking category information into account
(6 UAms ER T baseline vs. the other runs) improves performance. Despite the apparent
increase over the baseline, in terms of xinfAP scores, these differences are not signifi-
cant. We leave the investigation of this to further work. Adding additional features (be-
sides using category information) seems less beneficial; query expansion using the cat-
egory feedback method (method (ii) in Section 4.2) has a slight negative effect on per-
formance (4 UAms ER TC cat-exp vs. 3 UAms ER TC overlap). Mixing the two doc-
ument representations, full and paragraph, hurts performance (1 UAms ER TC mixture
vs. 3 UAms ER TC overlap), in this case significantly so.



Run xinfAP
1 FMIT LC TE nopred-stat-cat-a1-b8 0.402
2 UAms LC TCE dice 0.319
5 UAms LC TE baseline 0.133 *

Table 2. Results for the list completion task. Significant differences against our best performing
run are marked with *.

Results for the list completion task are shown in Table 2. We observe that adding es-
timates of P (e|e′) and P (e|C) to the baseline yields in substantial and significant im-
provements over our (naive) baseline. Further analysis is needed to see which of the
components makes up for most of this improvement.

8 Conclusion

We described the approach, submitted runs, and results of our participation in this year’s
INEX Entity Ranking track. Our focus lied on the entity ranking and list completion
tasks, and our chief aim was to develop a general language modeling framework to
model these in a uniform and theoretically sound way. Given the models we intro-
duced, we are left with plenty of choices on how to estimate the various components
these models offer. For most of these components we applied simple options which
mainly make use of the category information available in Wikipedia. Results show that
using category and entity information in different ways leads to increases in perfor-
mance over simple baselines, yet there is room for further improvements. Based on
these initial findings, in further work we aim at investigating additional, more elaborate
ways of estimating the various components, and exploring their impact on performance.
Since we made quite strong independence assumptions regarding our input variables,
in another line of work we are planning on examining these dependencies.
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