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ABSTRACT
With the emergence of various information access systems exhibit-
ing increasing complexity, there is a critical need for sound and
scalable means of automatic evaluation. To address this challenge,
user simulation emerges as a promising solution. This half-day
tutorial focuses on providing a thorough understanding of user sim-
ulation techniques designed specifically for evaluation purposes.
We systematically review major research progress, covering both
general frameworks for designing user simulators, and specific
models and algorithms for simulating user interactions with search
engines, recommender systems, and conversational assistants. We
also highlight some important future research directions.

CCS CONCEPTS
• Information systems → Evaluation of retrieval results;
Users and interactive retrieval.
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1 MOTIVATION
Although information access systems, such as search engines, rec-
ommender systems, and conversational assistants, are used by mil-
lions on a daily basis, how to appropriately evaluate those systems
remains an open scientific challenge. It is especially challenging to
evaluate a system’s overall effectiveness in helping a user finish a
task via interactive support. The fact that users vary significantly
in terms of their behavior and preferences makes evaluation even
more difficult. There are three widely-used evaluation methodolo-
gies for information access systems: reusable test collections [66],
user studies [38], and online evaluation [32]. However, none of
these methodologies can be used to compare multiple interactive
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information access systems (in terms of their overall effectiveness
in supporting users) using reproducible experiments due to the
static nature of the test collection-based approach and the lack of
reproducibility when real users are involved. User simulation has
the potential to enable repeatable and reproducible evaluations at a
low cost, without using invaluable user time (human assessor time
or online experimentation bandwidth). Further, simulation can aug-
ment traditional evaluation methodologies by offering possibilities
to gain insights into how system performance changes under differ-
ent conditions and user behavior. Relevant research work, however,
has been scattered in multiple research communities, including in-
formation retrieval, recommender systems, dialogue systems, and
user modeling. This tutorial is a first synthesis of this extensive
body of research into a coherent framework.

2 OBJECTIVES
Themain objective of this tutorial is to provide a systematic overview
of research progress in user simulation from the perspective of
evaluating information access systems. We synthesize scattered
research work from multiple research communities on this topic by
using general theoretical frameworks, which allows participants
to see how multiple lines of research are connected, the major
high-level issues in user simulation, and the general idea of using
simulation to evaluate information access systems. We also system-
atically cover many specific simulation techniques, with a focus on
those that may be employed to undertake evaluation of three major
types of information access systems, specifically, search engines,
recommender system, and conversational assistants, in order to (1)
estimate how well they will perform under various circumstances,
and (2) analyze how performance changes under different condi-
tions and user behaviors. We make our discussions as generic as
possible so that those working on other types of interactive systems
or applications of assistive AI would also find it useful.

Participants of the tutorial can expect to learn what user simula-
tion is, why it is important to use it for evaluation, how existing
user simulation techniques can already be useful for evaluating
interactive information access systems, how to develop new user
simulators, and how to use user simulation to evaluate almost any
assistive AI system. They can also expect to learn why user simula-
tion is challenging and where additional research is still needed.

3 TARGET AUDIENCE AND PREREQUISITES
This introductory tutorial primarily targets graduate students, aca-
demic researchers, and industry practitioners working on infor-
mation access or, more broadly, interactive AI systems. Since the
question of how to accurately evaluate a search engine, a recom-
mender system, or a conversational assistant is important to both
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practitioners who would like to assess the utility of their product
systems and researchers who would like to know whether their
new algorithms are truly more effective than the existing ones, we
expect our tutorial to be broadly appealing to participants of CIKM.

4 DURATION
The total duration of the tutorial is three hours (plus breaks).

5 SCOPE AND OUTLINE
The contents are organized into the following sections.

• Introduction and Background [20 min]
We first describe the spectrum of information access tasks. Next,
we briefly discuss the goals of evaluation and general method-
ologies of evaluation (reusable test collections, user studies, and
online evaluation). We then highlight the challenges involved in
evaluating information access systems and how user simulation
can help address those challenges.

• Overview of User Simulation [15 min]
This part provides a brief historical account on the use of simula-
tion techniques, and highlight how various research communi-
ties focused on different but complementary areas of evaluation
and user simulation. This includes early work on simulation in
information retrieval [22, 30, 72] and studies in interactive infor-
mation retrieval pointing out discrepancies between interactive
and non-interactive evaluation results [31, 70, 75]. In dialogue
systems research, simulation-based techniques have been used
for dialogue policy learning [68, 79], and to a limited extent also
for evaluation [27]. User simulation can be regarded as develop-
ing a complete and operational user model, which makes work
on search tasks and intent [17, 49], information seeking mod-
els [26, 55], cognitive models of users [14, 33], and economic IR
models [3, 4] highly relevant to us.

• Simulation-based Evaluation Frameworks [25 min]
We make the key observation that traditional evaluation mea-
sures used in IR may be viewed as naive user simulators, and
discuss how to interpret Precision, Recall, and NDCG@k from
an user simulation perspective [37, 83]. Next, we discuss met-
rics based on explicit models of user behavior, based on (1) the
assumed user task, (2) the assumed user behavior when inter-
acting with results, (3) the measurement of the reward a user
would receive from examining a result, and (4) the measurement
of the effort a user would need to make in order to receive the
reward. Specifically, we cover the RBP [58], ERR [20], EBU [78],
and the time-biased gain [71] measures, as well as the more
general frameworks of C/W/L [7, 56], C/W/L/A [57], and the
model-based framework by Carterette [18]. Finally, we present
a general simulation-based evaluation framework [83] and the
Interface Card Model [84], which can be used to evaluate an
interactive information access system with a computationally
generated dynamic browsing interface using user simulation.

• User Simulation and Human Decision-making [15 min]
In this part, we provide a high-level overview of research on
conceptual models that can provide theoretical guidance for mod-
eling processes and decisions from an individual’s perspective.

We cover models of search behavior within three main categories:
(1) cognitive models, focusing on the cognitive processes under-
lying the information-seeking activity [14, 33, 34], (2) process
models, representing the different stages and activities during the
search process [40, 48], and (3) strategic models, describing tactics
that users employ when searching for information [13, 61, 62].
Then, we discuss how to model decision-making processes math-
ematically using Markov decision processes (MDP). The MDP
framework provides a general formal framework for construct-
ing user simulators, which we will use to discuss specific user
simulation techniques in the next two sections.

• Simulating Interactions with Search and Recommender
Systems [45 min]
We start by presenting models that describe interaction work-
flows, that is, specify the space of user actions and system re-
sponses, and possible transitions between them [12, 53, 54]. Then,
we discuss specific user actions: query formulation [2, 5, 11, 19,
36, 42], scanning behavior [23, 24, 28], clicks [21, 28, 35, 85],
effort involved in processing documents [19, 51, 71, 86], and stop-
ping [50, 53, 54, 59, 77]. We also provide an overview of toolkits
and resources [9, 52, 80] and discuss approaches to validating
simulators [16, 41, 43].

• Simulating Interactions with Conversational Assistants [30
min]
We begin with a conceptualization of conversational informa-
tion access in terms of intents [6, 64, 73] and dialogue struc-
ture [15, 47, 63, 63, 76, 81, 82], and discuss two fundamentally
different simulator architectures: modular [1] and end-to-end sys-
tems [44, 74]. There is a solid body of work within dialogue sys-
tems research on simulating user decisions to build on, including
the widely used agenda-based simulation [67] and more recent
sequence-to-sequence models [25, 29, 39, 44, 45]. This is followed
by the discussion of simulation approaches developed specifically
for conversational information access [46, 60, 65, 69, 81, 82]. We
review toolkits and resources [1, 15, 60, 65, 69], followed by a dis-
cussion on how simulators themselves can be evaluated [68, 81].

• Conclusion and Future Challenges [15 min]
We conclude by highlighting open issues and providing several
potential research directions. We discuss how simulation tech-
nologies can help foster collaboration between academia and
industry. We also argue that some of the major challenges that
remain require research from multiple subject areas, including in-
formation science, information retrieval, recommender systems,
machine learning, natural language processing, knowledge repre-
sentation, human-computer interaction, and psychology, making
user simulation a truly interdisciplinary area for research.

• Discussion [15 min]
We dedicate the last bit of the tutorial to open-ended discussion
and feedback from participants.

6 SUPPLEMENTARY MATERIALS
The tutorial is based on a survey that is currently under review
at Foundations and Trends in Information Retrieval; a preprint
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is available at [10]. There is a companion website to the survey,
https://usersim.ai, which also hosts the slides for the tutorial.

7 RELATED TUTORIALS
We are not aware of any tutorials dedicated to user simulation at
CIKM or related conferences (SIGIR, WSDM, TheWebConf, etc.).
However, due to the interdisciplinary nature of the topic of our
tutorial, there are a few related tutorials in both the Information
Retrieval (IR) community and the Machine Learning community.

The tutorial on Interactive IR (IIR) given by Zhai at SIGIR’20 and
SIGIR’21 includes a brief discussion of the use of user simulation
for evaluating IIR systems, but that tutorial only briefly covered the
evaluation framework proposed in [83], how some basic evaluation
measures can be interpreted in the framework, and how it could be
used to evaluate a particular IIR system. Our tutorial covers a much
broader scope of topics about user simulation and a more in-depth
explanation and discussion of the evaluation framework. Another
relevant tutorial is a CHIIR 2021 Tutorial on the C/W/L Evalua-
tion Framework, covering User Models, Metrics and Measures of
Search [8]. It also connects evaluation with user modeling as our
tutorial does, but only covers the C/W/L evaluation framework and
simulation of a user’s scanning and clicking behavior. Our tutorial
has a much broader coverage of many user simulation techniques
and deeper discussion of the relation of simulation and evaluation.

A tutorial recently given at NeurIPS 2019 on Human Behavior
Modeling withMachine Learning: Opportunities and Challenges1 is
related to our tutorial in that the ML techniques used for predicting
and analyzing human behavior covered in that tutorial are related
to the ML techniques used for simulating user behavior, but their
tutorial is not about simulation of users.

The broad connection of the proposed tutorial to other commu-
nities is aligned well with the broad scope of topics covered by
CIKM. We hope that the tutorial may also attract a diverse group
of participants from different communities.

8 PRESENTERS
Krisztian Balog is a full professor at the University of Stavanger
and a staff research scientist at Google. His general research in-
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able search and recommendation methods. Balog regularly serves
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