
Generating Categories for Sets of Entities
Shuo Zhang∗
Bloomberg

London, United Kingdom
szhang611@bloomberg.net

Krisztian Balog
University of Stavanger
Stavanger, Norway

krisztian.balog@uis.no

Jamie Callan
Carnegie Mellon University

Pittsburgh, USA
callan@cs.cmu.edu

ABSTRACT
Category systems are central components of knowledge bases, as
they provide a hierarchical grouping of semantically related con-
cepts and entities. They are a unique and valuable resource that is
utilized in a broad range of information access tasks. To aid knowl-
edge editors in the manual process of expanding a category system,
this paper presents a method of generating categories for sets of
entities. First, we employ neural abstractive summarization models
to generate candidate categories. Next, the location within the hier-
archy is identified for each candidate. Finally, structure-, content-,
and hierarchy-based features are used to rank candidates to iden-
tify by the most promising ones (measured in terms of specificity,
hierarchy, and importance). We develop a test collection based
on Wikipedia categories and demonstrate the effectiveness of the
proposed approach.

CCS CONCEPTS
• Information systems→ Semi-structured data; Incomplete data.

KEYWORDS
Category generation; Wikipedia categories; entity typing; knowl-
edge base population
ACM Reference Format:
Shuo Zhang, Krisztian Balog, and Jamie Callan. 2020. Generating Categories
for Sets of Entities. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM ’20), October 19–23, 2020,
Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3340531.3412019

1 INTRODUCTION
Category systems provide a hierarchical and topical organization
of entities and concepts. They are meant to help arrange and access
topically related items, and are immensely useful. Compared to
type hierarchies of knowledge bases, such as the DBpedia ontology
or Freebase types, we are focusing on category systems that are
much finer-grained and larger scale (e.g., Wikipedia categories
or YAGO classes). There, many categories have complex names
that reflect human classification and organization, and as such,
∗Work done while visiting CMU, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412019

ŏ Seven expansions have been released: The Burning Crusade, released in
January 2007; Wrath of the Lich King, released in November 2008; Cataclysm,
released in December 2010; Mists of Pandaria, released in September 2012…

Existing categories:

Blizzard games

Massively multiplayer online game

Video games franchises

Warcraft games
under: Blizzard games

Massively multiplayer online role-playing game
under: Massively multiplayer online games

Video games with expansion packs
under: Video game franchises

Suggestions for new categories:

List of mentioned entities: The Burning Crusade, Wrath of the Lich King,
Cataclysm, Mists of Pandaria, Warlords of Draenor, Legion, Battle for
Azeroth, Shadowlands

Figure 1: Given a set of entities alongwith context (surround-
ing text), we aim to create new categories, if no fine-grained
enough category exists in the category system. To ensure
that a new category can meaningfully complement the cur-
rent category system, we also find its place (i.e., parent cate-
gory) in the hierarchy. These suggestions are presented to a
human editor for consideration.

encode knowledge about class attributes, taxonomic, and other
semantic relations [23, 26]. As a result, categories represent a unique
and valuable resource, which has been exploited for various tasks,
including entity retrieval [9, 15, 39], query understanding [2], and
knowledge acquisition [23, 26].

A large body of prior work focuses on assigning entities to cate-
gories, which is usually referred to as the task of fine-grained entity
typing [8, 25, 43]. Entity typing deals with a single entity as input
(often with some surrounding text, as context), and it implicitly
assumes that there exist suitable types/categories. However, since
new entities continuously emerge [11, 13, 42], this assumption is
unrealistic in practice, and brings about the need for creating new
categories.1 The problem of expanding hierarchical category sys-
tems of entities with new categories has not received due attention
to date.

An important consideration in this work is that category cre-
ation should not be driven by individual entities. Looking at single
entities may not be informative, as each could be an outlier. On the
other hand, when there is a set of entities for which no suitable,
i.e., fine-grained enough, category exists, that would be a reason
for expanding the category system. Note that it is very natural to
operate with sets of entities; lists and tables are ubiquitous on the
Web. Tapping into these would allow us to complement existing cat-
egory systems. Taking Fig. 1 as an illustration, we can recommend
existing categories for this set of mentioned entities, but they are
not fine-grained enough. In this case, the creation of new categories
would be desired.
1We note that it is a less severe issue for types, which are coarse-grained.

https://doi.org/10.1145/3340531.3412019
https://doi.org/10.1145/3340531.3412019
https://doi.org/10.1145/3340531.3412019

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Shuo Zhang, Krisztian Balog, and Jamie Callan

The challenge we tackle in this paper is the following: given
set of entities, generate new categories to meaningfully extend a
given category system. The main difference between “plain” entity
sets and categories is that the latter are “named” sets which are
organized hierarchically. This gives rise to two specific novel sub-
problems we are addressing in this work: (i) generating a label for
the new category (comprising of the input set of entities), and (ii)
finding its place in the category system (i.e., locating an appropriate
parent category).

To study this problem, we take Wikipedia categories as a repre-
sentative of a large-scale hierarchical category system that is widely
utilized. Currently, Wikipedia categories are created manually by
editors (“Wikipedians”). With the increasing number of Wikipedia
pages, more categories are created and added for organization. In
2012, there were about 660k categories, while at the time of writing
there are over 1.1M categories. Nevertheless, the category system
is still extremely sparse and noisy, as it contains duplications, er-
rors, and oversights [6]. Given the sheer number of categories, the
maintenance and expansion of the category system are becoming
increasingly difficult. It would be of great practical value to provide
a method for automatically generating categories, triggered by up-
dates made to a Wikipedia article. The specific instantiation of our
general problem in this application scenario is the following. We
assume a user is editing a Wikipedia article, where a list of entities
has already been mentioned. Against this setting, our objective is
to see if new categories could be generated, based on the list of
entities, which may be added to Wikipedia. These suggestions are
presented to a human editor for consideration. More generally, we
aim to generate new categories in an automatic manner for sets
of entities. While in this work we focus exclusively on Wikipedia
categories, the methods we develop generalize to other category
systems as well.

To control the quality of category labeling, we follow two gen-
eral rules (in accordance with Wikipedia guidelines): (1) a label
should be as specific as possible; and (2) similar categories should
be avoided [20]. Inspired by this, we identify four main challenges
related to the automatic generation of categories.

• (C1) Specificity: A proper category should be sufficiently spe-
cific to capture the entity set intent. For example, 2018 Oscar
Winners is a more specific category than Actors, although both
might describe the contents of an entity set.
• (C2) Hierarchy: The more specific a category, the deeper down
it is located in a hierarchy. We explicitly focus on leaf categories
and aim to place them in the hierarchy by finding their respective
parent categories.
• (C3) Redundancy: Redundant categories should be avoided.
While we are not addressing this problem explicitly in this paper,
we postulate that by identifying parent or sibling categories, and
presenting these to the human editor, would help address this
issue.
• (C4) Importance: An important category is expected to orga-
nize salient entities and encode knowledge, which is not already
covered by sibling categories.

We propose a pipeline architecture consisting of several steps to
overcome the above challenges. Specifically, given a set of entities
as well as the surrounding text, we aim to generate a ranked list of

categories that capture the semantics of that set. Categories can be
generated by summarizing the words contained in the input. The
ranked list may be further refined by incorporating signals from
the context (e.g., surrounding text and page title). A particularly
important subtask is to find the generated category’s place in the
hierarchy, by identifying its parent category. This information can
then be further utilized as an additional ranking signal. In summary,
the contributions of this work are as follows.

• We propose the task of generating categories for sets of entities,
and develop an approach to generate categories that are specific,
hierarchical, nonredundant, and important.
• We develop a test collection based on Wikipedia categories and
lists, and perform an extensive evaluation of the proposed ap-
proach.

2 RELATEDWORK
The task of generating new categories from entity sets for extending
the category system of a knowledge base is related to the problems
of entity typing, conceptual labeling, knowledge base population
using semi-structured data, and ontology generation.

Entity typing refers to the task of assigning types to mentions of
entities in context [8, 25, 29, 43]. The roots of this problem may be
traced back to named entity recognition (NER), which focuses on
the detection of entitymentions in text and type-annotation of these
mentions from a small set of coarse types (such as person, organiza-
tion, location, and miscellaneous) [22]. Over the years, attention in
NER has shifted from annotating against a small set of coarse types
to using fine-grained types from a type taxonomy, which allows
multiple and hierarchical types [37]. Unlike traditional NER work,
recent entity typing approaches assume entity mentions to be pro-
vided as part of the input. For example, AFET [29] is a hierarchical
partial-label embedding method for automatic fine-grained entity
typing. It learns embeddings for mentions and types-paths, and
iteratively refines the model. Choi et al. [8] introduce a new entity
typing task to predict a set of free-form phrases, namely ultra-fine
types, that describe the role the entity plays in a given sentence.
Having free-form noun phrases as type descriptors, as opposed to
existing fined-grained types from a taxonomy, is intended to im-
prove downstream entity-focused tasks. Though both entity typing
and our task deal with types and entities, we focus on creating new
categories for entity sets, as opposed to dealing with a single entity.

Another related problem is conceptual labeling, which is the task
of generating a small set of labels that best describe a set of words
or phrases [36]. Labels can be concepts, entities, or types/categories
from a knowledge base. While conceptual labeling takes a set of
items as input, its objective is language understanding with the help
of existing concepts/types. This is fundamentally different from our
objective of expanding category systems of knowledge bases.

Knowledge base population (KBP) typically involves two tasks,
entity linking and slot filling [14, 41]. The former aims to link
(often ambiguous) entity mentions in text to specific entries in a
knowledge base, while the latter is concerned with completing the
information available on a given entity. Sets of entities, as defined
by tables and lists, have been considered in KBP. For example,
table-to-KB matching is considered as a fundamental step towards
utilizing tables for KBP, and involves two specific sub-problems:

Generating Categories for Sets of Entities CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

Section heading

Page title

Category generation (Sect. 4)

Candidate
generation

Initial
ranking

Category selection (Sect. 5)

Parent category identification

c1

c2

c3

…

c2

c4

…

:

:

…

…

c2

c4

c1

…

Final ranking

c2

c2

+

+ c4

c1

c2

…

…

c4 +

…

Figure 2: Illustration of our category generation pipeline.

entity linking for tables and table schema to predicate matching.
Ritze et al. [31] propose an iterative method for matching tables to
DBpedia. They develop a manually annotated dataset for matching
between a Web table corpus extracted from Common Crawl [19]
and DBpedia. In follow-up work, Ritze and Bizer [30] focus on a
feature study for the same task. Specifically, they consider features
extracted based on the tables themselves or from the knowledge
base, and evaluate the utility of these for the matching task.

Category creation is also related to the task of ontology genera-
tion [1, 3, 5, 28, 32, 35, 38]. It can be based on various sources, from
unstructured free text to structured tabular data. An example for the
latter is the work by Pivk [28], who proposes automatic ontology
generation using tabular structures. The steps include extracting
and transforming a table into a regular matrix form, detecting ta-
ble structure like orientation, schema and cells, identifying table
type, rearranging table regions into a directed acyclic graph, and
generating an ontology based on the graph. McGuinness [21] de-
scribes the scope of ontology specifications from simple ontologies
to structured ones. The Wikipedia category structure corresponds
the former because of its information hierarchy, but it is not a strict
and logically grounded ontology due to the inconsistencies and
loose relationships [38]. There are two main distinguishing aspects
of our approach. First, we expand an existing taxonomy, unlike
most prior approaches that generate categories from top to bottom.
Second, we generate suggestions to assist a human editor instead
of aiming for a fully automated category population.

The machine-readable semantic knowledge provided by tax-
onomies has proved to be beneficial in an array of natural lan-
guage understanding problems [4]. Wikipedia categories represent
a unique and extremely valuable resource in this capacity, and have
been utilized for a broad range of tasks [2, 9, 15, 20, 23, 24, 26].

3 PROBLEM STATEMENT AND OVERVIEW
We provide a formal definition of the problem we are addressing.

Definition 1 (Category generation based on entity sets):
Given a set of entities E and its context EC , category generation is the
task of generating a ranked list of category suggestions ⟨c1, . . . , cn⟩.
Each category suggestion c is to be added as a leaf node in the category
hierarchy under an existing parent category cp .

We assume that the context of EC includes the title of the page
and of the context where the entities lie, as well as any existing
categories that have already been assigned to that article (by a
Wikipedian).

We address the category generation task using a pipeline ap-
proach, shown in Figure 2. The two main components of this
pipeline are category generation (Sect. 4) and category selection
(Sect. 5). In category generation, we first generate candidate cate-
gories that are relevant to the input entities and their context. E.g.,
given a set of entities about “European national teams not affili-
ated to FIFA,” it generates candidates like National football teams
in the isle of man, Football teams in the isle of man, Isle of man, Na-
tional association football teams and European national and official
selection-teams not affiliated to FIFA. Then, we perform an initial
ranking of the candidates, using a set of inexpensive features based
on structure and content information.

In the second pipeline component, category selection, we first
attempt to find the place of each candidate category in the category
hierarchy by locating possible parent categories. For instance, for a
candidate category European national and official selection-teams
not affiliated to FIFA, possible parent include National and official
selection-teams not affiliated to FIFA. Then, we perform a final rank-
ing of the candidates, using their predicted place in the hierarchy as
an additional ranking signal. This allows us to more accurately es-
timate category importance as well as to avoid creating redundant
categories. In the above example, the candidate National association
football teams would be excluded. Finally, the top-ranked sugges-
tions would then be presented to a human editor, who can decide
which of these categories, if any, should be created.

4 CATEGORY GENERATION
The first component of our pipeline is responsible for the generation
of candidate categories. In particular, in this part, we address the
challenge of specificity (C1). Our approach consists of a candidate
generation step based on pointer-generator networks (Sect. 4.1),
followed by an initial ranking of the candidates, using a set of
inexpensive features (Sect. 4.2).

4.1 Candidate Generation
Abstractive summarizationmodels, which are used for summarizing
documents into a few sentences, have proved effective to generate
titles for the semi-structured data [12]. In this work, we consider
three neural text summarization models to learn to generate cat-
egories. We concatenate all the entities and contextual data into
key-value pairs and use them as the representation of input data to
be fed into the summarization models.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Shuo Zhang, Krisztian Balog, and Jamie Callan

• Pointer-generator network [33] is a hybrid neural network that
combines pointing and generating mechanisms.2 It uses a bi-
LSTM encoder and LSTM decoder with attention. The generation
probability Pд ∈ [0, 1] for each step is calculated from the context
vector ct , the decode state ht , and the decode input xt :

pд = σ (Wc · ct +Wh · ht +Wx · xt + b) , (1)

whereWc ,Wh and scalar b are learnable parameters, and σ is the
sigmoid function. Pд is used as soft switch to choose to sample
from the vocabulary distribution Pv or to copy a word from the
input with the attention distribution Pa . The loss for each token
w is:

P = Pд · Pv (w) + (1 − pд) · Pa(w) . (2)
The loss function is the average negative log likelihood of the
generated sequence. In addition, See et al. [33] propose a coverage
mechanism to overcome token duplications; here, we take the
pointer-generator itself as the base model.
• NATS [34] is an abstractive text summarization approach that
extends the pointer-generator network. One issue summarization
models suffer from are repetitions (both word-level and sentence-
level). To overcome it, Intra-decoder [27] allows a decoder to keep
track of previously decoded tokens apart from the source data, not
repeatedly producing the same information. Additionally, sharing
the weights with the decoder is a common solution that can boost
performance. In summary, we take the pointer-generator network
as the base model and equip it with the coverage mechanism and
unknown words replacement, as in [34].
• FAST [7] is a neural generative model that first selects salient
sentences and then rewrites them abstractively. Making use of
salient information from the extraction process is another way to
improve the summarization [34]. The FAST model consists of an
extractor agent and an abstractor network. The extractor aims
to learn to extract the salient data from the source by training
a pointer network, while the abstractor rewrites the extracted
sentences to get the final summarization.

4.2 Initial Ranking
Weperform an initial ranking of candidate categories using structure-
based and content-based features. These features are fed into a
Random Forest regressor in order to obtain an initial ranking of the
candidates. Only the top-k ranked candidates are kept for down-
stream processing.

4.2.1 Structure-based Features. The first set of features is based on
structure (or patterns) in the category names; these are listed in the
top block of Table 1. Most features are simple characteristics. The
first one is the length of the category name (|c |). The next feature
(IsPrepos(c)) is motivated by the observation that prepositions are
a strong indicator of semantic relations [17]. E.g., Films directed by
Joss Whedon indicates the explicit relation between Films such as
The Avengers and Joss Whedon. We thus consider the presence of a
preposition as a feature. Further, we decompose category names
based on entities mentioned in them and write Ec to denote the
set of entities in category c . We find that over 91% of Wikipedia
categories contain entities. Then, two features are constructed based
2The network allows to copy words via pointing as well as generate words from a
fixed vocabulary.

on Ec , namely, the number of entities |Ec |, and the aggregation on
the number of categories of the elements in Ec according to:

CatNumaggr (Ec) = aggr
(
{|Ce | : e ∈ Ec }

)
, (3)

whereCe indicates the set of categories entity e is a member of and
aggr is an aggregator function. Specifically, we use max, sum, and
avg as aggregators. Similarly, we also take the aggregated category
term frequencies as signals.

4.2.2 Content-based Features. The second set of features, listed
in the middle block of Table 1, are based on the content of cate-
gories, measured in terms of labels, entities contained, and parent
categories. One group of features is based on the similarity of cate-
gory labels. Intuitively, a new category should be consistent with
the naming of existing categories. Using the candidate category
name as a keyword query, we rank all existing categories C in
Wikipedia using BM25, and take the retrieval scores of the top-k
highest ranked categories as features (CatNameSim(c,C)). Simi-
larly, we also rank all entities E in Wikipedia using the candidate
category name as the query and use the top-k scores as features
(EntityNameSim(c, E)).

We can also measure the similarity between the candidate cat-
egory c and existing categories c ′ ∈ C in terms of the entities
they contain. For this, we operate on an index of categories where
tokens are member entities. To estimate the member entities of
the candidate category Ec , we take all entities that are present in
the input set. Then, we create a search query by enumerating all
entity tokens in Ec to rank existing categories c ′ ∈ C. The top-k
retrieval scores are used as features (EntitySim(Ec , Ec ′)). Addition-
ally, we compute the entity overlap between Ec and each of the
top-k existing categories Ec ′ in two different ways (|Ec∩Ec′ |

|Ec |
and

|Ec∩Ec′ |
|Ec′ |

).
Finally, we use parent categories (Cc and Cc ′), analogously to

member entities, by creating an index of categories where tokens
are their parent categories (i.e., treating categories as atomic units,
without splitting up their labels) and computing the same features.

To rank candidates, all structure- and content-based features are
fed into a Random Forest regressor.

5 CATEGORY SELECTION
Next, we select categories that are deemed appropriate, by ranking
the candidates generated in the previous section, then pruning
the ranked list. Specifically, we start by identifying the potential
parents of each candidate category (Sect. 5.1). Our final ranking
then considers the place of the candidate category in the hierarchy
(Sect. 5.2), thereby addressing the challenges of hierarchy (C2),
redundancy (C3), and importance (C4).

5.1 Parent Category Identification
An important element of our approach is to find the place of the
candidate category in the hierarchy. This is cast as a ranking prob-
lem: given a candidate category, return a ranked list of possible
parent categories.

It is intuitive to think that a category would be named similar
to its parent categories. Indeed, we find that nearly 90% of the
category-parent (⟨c, cp ⟩) pairs in Wikipedia share at least one term,

Generating Categories for Sets of Entities CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

Table 1: Features for category classification. Initial ranking (in Sect. 4.2) uses the first two blocks of features, while final ranking
(in Sect. 5.2) uses all features.

Feature Explanation #Features

I. Structure-based features

|c | Length of the category (number of terms) 1
IsPrepos(c) Binary indicator whether c contains prepositions 1
IsStopwords(c) Binary indicator whether c contains stopwords 1
IsEntity (c) If c is an entity 1
|Ce | Number of categories if c is an entity 1
CatNumaggr (Ec) Aggregation of the number of categories for entities contained in c 3
TermFreqaggr (Tc) Aggregation of term frequencies for terms in c 3

II. Content-based features

CatNameSim(c,C) Top-k BM25 scores using category labels k
EntityNameSim(c, E) Top-k BM25 scores using entity labels k
EntitySim(Ec , Ec ′) Top-k BM25 scores using member entities k
EntityOverlap(Ec , Ec ′) Top-k member fractions against input category (|Ec ∩ Ec ′ |/|Ec |) k
EntityOverlap2(Ec , Ec ′) Top-k member fractions against candidate category (|Ec ∩ Ec ′ |/|Ec ′ |) k
ParentCatSim(Cc ,Cc ′) Top-k BM25 scores using categories of c k
ParentCatOverlap(Cc ,Cc ′) Top-k category fractions against input category (|Cc ∩ Cc ′ |/|Cc |) k
ParentCatOverlap2(Cc ,Cc ′) Top-k category fractions against candidate category (|Cc ∩ Cc ′ |/|Cc ′ |) k

III. Category importance features

Importanceaggr (c) Aggregation of the number of categories containing each segment of the category name 3
Inlinksaggr (c) Aggregation of the numbers of inlinks of member entities 3
Outlinksaggr (c) Aggregation of the numbers outlinks of member entities 3
GraphSize(c, cp) Total number of member entities, siblings and parent categories 1
GraphStat (c, cp) Aggregation of the number categories of member entities in the parent category (cp) 3

e.g., ⟨Companies established in 1974, Clothing companies established
in 1974⟩. However, there are also numerous examples of categories
that share terms with many other non-related categories, e.g., Drag-
ons (mythological monsters) and Dragon age (fantasy role-playing
game). In other cases, the category and its parent only share the
topic, but not any of the terms, e.g., ⟨Middle-earth Valar, Fictional
deities⟩. Additionally, the Wikipedia category system suffers from
the violation of the transitivity principle, i.e., a category may con-
tain irrelevant subcategories [16], e.g., ⟨Flight, Motion (physics)⟩.
Simple term-based matching techniques are thus unlikely to be
sufficient, making it an extremely challenging task.

To overcome the above issues, we construct a topic graph based
on all (existing) ⟨c, cp ⟩ pairs in Wikipedia. Inspired by Lawrie et al.
[18], we aim to find topic words for multi-document summarization.
The model is composed of all conditional probabilities P (ta |tb),
where ta is a topic term in cp and tb is a category term in c . For
simplicity, we will be referring to terms, noting that these can also
be multi-word phrases. We segment the categories by proposition.
For example, the parent category of 1903 establishments in Colombia
is 1903 establishments in South America, and we segment them
to {1903 establishments, South America}, and {1903 establishments,
Colombia} respectively, and take South America as a and Colombia
as tb . We segment categories by tokens for those that do not have

prepositions. Then, we set

P (ta |tb) =
n(ta , tb)

n(tb)
, (4)

where n(ta , tb) is the number of ⟨c, cp ⟩ pairs where cp contains
ta and c has tb , and n(tb) is the number of categories containing
tb . We form a graph by considering each parent topic term and
category term as vertices, and assign P (ta |tb) as the weight of the
edge between them.

This topic graph, illustrated in Fig. 3, is then leveraged in two
orthogonal ways: for query expansion and for ranking.

5.1.1 Query Expansion. The name of the category c can be used
as a keyword query to find related categories. Additionally, we
propose a query expansion mechanism to generate an expanded
query. We leverage the topic graph to add the top topic parent terms.
Instead of using a fixed rank-based cutoff, we employ dynamic
thresholding. Specifically, we set 1

α maxta P (ta |tb), where tb ∈ c ,
as the threshold. Notice that this ensures that at least one topic term
is always selected. Terms with weights exceeding the threshold are
chosen and put in the topic set T̃t . Terms in the set will form a new
query by appending the topic words to the original query, i.e.,

c̃ = c ∪ T̃c , (5)

where T̃c = ∪t ∈cT̃t is the entire set of the topic parent terms of c .
Then, c or c̃ is used as a keyword query to retrieve parent categories.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Shuo Zhang, Krisztian Balog, and Jamie Callan

Africacountry

Roman Catholic dioceses

Swaziland

Roman Catholic Church
0.9

0.5 0.40.1

Figure 3: Excerpt from the topic graph, which is utilized
both for query expansion and for ranking parent categories.
When used for query expansion, the selected topic words
for a candidate category Swaziland would include country
andAfrica. When used for ranking, P (ta |tb) between Roman
Catholic Church and Roman Catholic dioceses is 0.9.

5.1.2 Ranking using Topic Graph. Given a keyword query q, which
may be the category name c or the expanded query c̃ (cf. Eq. (5)),
we propose the following hierarchy-based retrieval model based on
the topic graph:

ϕH (q, cp) =

∑
ta ∈cp

∑
tb ∈q P (ta |tb)

|cp | · |q |
, (6)

where ϕ stands for the retrieval score, and |cp | and |q | are measured
in the number of segmented terms. This hierarchy-based model
can then be combined with a content-based retrieval model (here:
BM25) in a simple multiplicative manner:

ϕcombined (q, cp) = ϕBM25 (q, cp) · ϕH (q, cp) . (7)

5.2 Final Ranking
The final ranking step considers the place of each category in the
hierarchy. Given a candidate category c and the set of its top-k
possible parent categories Cp , we score each ⟨c, cp ⟩ pair (cp ∈ Cp),
denoted asψ . Then, the final score for each candidate category is
computed using:

score(c) = max{ψ (c, cp) |cp ∈ Cp } . (8)

The above score determines the order in which suggestions are
presented to Wikipedia editors. Additionally, we filter out low qual-
ity suggestions, whose score is below a pre-defined threshold (i.e.,
score(c) < γ).

To estimateψ (c, cp), we use the same feature-based supervised
learning approach as for the initial ranking (cf. Sect. 4.2), but intro-
duce a third group of features. These category importance features
are listed in the bottom block of Table 1. We assume that the im-
portance of a category depends on its content. To capture content
importance, we segment the candidate category into the set S us-
ing the following rules: prepositions are isolated, longest prefix
and suffix are kept if they can be found in other categories. E.g.,
Geography of North Yorkshire is segmented as {Geography, of, North
Yorkshire} (asNorth Yorkshire is the longest prefix found in other cat-
egories before a preposition). We estimate a category’s importance
by aggregating those of its segments:

Importanceaggr (c) = aggrs ∈∫ {n(s)} , (9)

where n(s) is the number of (existing) categories that contain the
segment s in their name and aggr is an aggregator function (max,

sum, or avg). Alternatively, category importance can also be charac-
terized by hierarchical properties. Since we know the corresponding
parent category cp , we can consider the number of member entities
Ec of the candidate category (as before, approximating it by taking
all entities that are present in the input set), number of siblings,
as well as the size of other categories that the member entities Ec
belong to. Apart from the number of member entities, their impor-
tance also matters. We estimate the member entities’ importance
by their number of Wikipedia inlinks and outlinks.

6 EXPERIMENTAL SETUP
We describe the creation of purpose-built test collections and detail
our experimental setup.

6.1 Test Collections
Since no test collection exists for our task, we need to develop
evaluation resources for the end-to-end task as well as for specific
components of our pipeline.

6.1.1 End-to-end Evaluation. Recall that our input is a set of entities
in a Wikipedia page, and the output is a ranked list of category
suggestions, presented to a Wikipedia editor (cf. Fig. 1). Rather
than in random paragraphs, entity sets are more likely to appear
in semi-structured formats such as tables and lists [40]. We sample
tables/lists from aWikipedia dump as inputs and try to heuristically
recover the categories that could be created based on the set of
entities contained in them. We do so by leveraging the categories
that are associated with the corresponding Wikipedia page.

Specifically, our test collection consists of over 10k input ta-
bles/lists that are sampled from Wikipedia. We limit ourselves to
tables/lists that contain a reasonable amount of information, that is,
have at least five entities, which is the entity set E. For each input
entity set E, we obtain the ground truth categories based on the
categories that are assigned to the embedding Wikipedia page. For
each of the page’s categories c , we check if over half of the entities
in E are members of that category. If yes, then c is added to the
ground truth, i.e., is a good suggestion. Then, category c , along with
all its subcategories, is removed from the page as well as from the
Wikipedia category system.3 Our aim will thus be to “rediscover” c
based on the input entities (The remaining categories of the page
will be utilized as part of the input.) We avoid “trivial” categories,
that is, when the name of the category is the same as the title of the
corresponding Wikipedia page. Further, we make sure that no pair
of entity sets have identical ground truth (so as to avoid “leakage”
between training and test data). Our test collection comprises of
10,542 tables/lists, originating from 10,149 Wikipedia pages (a page
might contain multiple tables/lists). On average, there are 1.55 cor-
rect category suggestions for entity set in the ground truth. Finally,
the test collection is split 80/10/10 into train/validation/test splits.

6.1.2 Category Ranking. The category ranking component is used
in both the initial and final ranking steps of our pipeline (cf. Sects. 4.2
and 5.2). To train a machine-learned model, we require a set of pos-
itive and negative category examples. While the former is straight-
forward, the selection of negative (“bad”) categories is challenging

3We manually exclude a handful of general categories, like Living people.

Generating Categories for Sets of Entities CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

as those categories are non-existent. This is the very fact we ex-
ploit: categories that existed for a while but got removed from
Wikipedia are bad ones, while those that still exist are likely to
be good ones. Thus, we take snapshots of the Wikipedia category
system at three different points in time (2012, 2016, and 2019) and
check the existence of a given category across them. If a category
is present in all three snapshots (2012, 2016, and 2019), it is believed
to be a sound category (positive example) given its long-lasting
existence. In contrast, if a category exists in the 2012 snapshot, but
does not appear in both 2016 and 2019, then it is deemed to be a
poor category (negative example). We sample a total of 50k positive
and 50k negative categories. From this set, we remove categories
that had their labels updated or replaced (by Wikipedians) because
of naming conventions. E.g., Speakers of the National Assembly
of Mauritius was replaced with Speakers of the National Assembly
(Mauritius). We detect such changes using a set of simple rule-based
methods (based on edit distance and member entity overlap). We
further subsample 5k negative and 5k positive categories from the
remaining categories. Then, the resulting 10k categories are used as
training data for the category ranker. Note that some features also
consider the parent category (cf. Table 1). Since some categories
have multiple parents, we select a single parent category that is the
largest one (i.e., has the most member entities).

6.1.3 Parent Category Identification. Additionally, we create a sep-
arate test collection for evaluating the parent category identification
component. We randomly sample 5k leaf categories as input, and
take their corresponding parent categories (2.4 on average) as the
ground truth.

6.2 Experimental Setup
6.2.1 Evaluation Measures. Both the end-to-end task and the vari-
ous components are evaluated using standard rank-based measures
(NDCG, MAP, MRR, and Precision) at cut-off k . We measure statis-
tical significance using a two-tailed paired t-test, with Bonferroni
correction. We use †/‡ to denote significance at the 0.05 and 0.01
levels, respectively.

6.2.2 Category Generation. We employ three candidate generation
methods. The pointer-generation network is based on [33], follow-
ing the settings used in [12] (which is used to generate titles for
Web tables). For NATS [34], we use their publicly released toolkit.4
We leverage the features of the coverage mechanism and unknown
words replacement apart from the pointer-generator network. We
train the model for 35 epochs, and set the learning rate to 0.0001.
The FAST model is based on [7]. Word embeddings with 128 di-
mensions are generated using gensim5 for the training data. We
use the Adam optimizer and the same learning rate as for NATS
for training the full network. We perform beam search for all three
approaches to choose the suitable models. The categories generated
by the three models are combined in a candidate pool.

In the initial ranking step, we set k = 5 (for content features
that consider the top-k similarity scores). We train a regression
model based on the 10k samples in our category ranking dataset (cf.
Sect. 6.1.2) and apply it to rank the categories in the candidate pool.

4https://github.com/tshi04/NATS
5https://github.com/RaRe-Technologies/gensim

Table 2: Candidate generation results using three generators
(row 1-3) and our initial ranker (row 4). Statistical signifi-
cance for row i > 1 is tested against row i − 1.

Method NDCG@1 NDCG@10 P@5 MRR@10

PG [33] 0.1213 0.2151 0.0614 0.1794
NATS [34] 0.2351‡ 0.2459‡ 0.0573 0.2483‡

FAST [7] 0.3735‡ 0.3821‡ 0.0948‡ 0.3876‡

SCG (Ours) 0.5137‡ 0.8098‡ 0.2383‡ 0.6759‡

Specifically, we employ the Random Forest algorithm, with the
number of trees set to 1000 and the maximum number of features
in each tree set to 10. Note that the initial ranker uses only the
structure-based and content-based features in Table 1.

6.2.3 Category Selection. The second component of our pipeline
comprises of two steps: parent category identification and final rank-
ing. For parent category identification, we build the topic graph
using all the ⟨c, cp ⟩ pairs in Wikipedia, excepting the 5k test cat-
egories and their parents which we sampled for evaluation (cf.
Sect. 6.1.2). Next, we fetch the top 10 parent categories using query
expansion. We set α to 2 based on a set of preliminary experiments.

For final ranking, we use all features in Table 1 and train a ranker
with the same settings as for the initial ranking step. We filter out
low quality suggestions, using a score threshold of γ = 0.1.

Additionally, we consider BERT [10] as a baseline for the final
ranking step. BERT is a highly effective language representation
model, which has been designed to be pre-trained from unlabeled
text. We take a pre-trained BERT model (“bert_uncased_L-12_H-
768_A-12,” which has been trained on the English Wikipedia and
the BookCorpus) and fine-tune it for a sentence pair classification
task. Specifically, we compose sentence pairs by taking a Wikipedia
category c as the first sentence and its parent category cp as the
second sentence. We utilize the method in Sect. 5.1 to find the
parent categories, and use the sentence pair classification score for
ranking. Importantly, the pre-trained BERT model has a potential
data leakage issue, as the category we want to generate may exist
in the corpus that was used for training. Therefore, BERT may have
an unfair advantage. Nevertheless, it can be meaningful to see how
our approaches fare against it.

7 EVALUATION
We evaluate the performance of category generation (Sect. 7.1), par-
ent category identification (Sect. 7.2), and final ranking (Sect. 7.3).

7.1 Category Generation
The first component of our pipeline is responsible for the genera-
tion of specific candidates that are relevant to the input entity set.
The results of the three generation models are presented in the top
block of Table 2. Pointer-generator (PG) generates 3.5 candidate
categories on average for entity set, while NATS and FAST produce
1.5 and 1.6 candidates, respectively. These are ranked by the gen-
eration confidence score. After pooling these together, each entity
set yields 4.5 candidates on average. Comparing the effectiveness
of the three approaches, we can see that NATS outperforms PG

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Shuo Zhang, Krisztian Balog, and Jamie Callan

Table 3: Parent category identification results. Statistical significance of the bottom block is tested against the top block (†/‡)
and columns two and three against column one (using ♢/♦ to denote significance at the 0.05 and 0.01 level, respectively).

Method BM25 Hierarchy-based Combined
MAP@k MRR@k MAP@k MRR@k MAP@k MRR@k

Without query expansion (k = 10) 0.0714 0.1423 0.1110♦ 0.2342♦ 0.1115 0.2348
Without query expansion (k = 1000) 0.0839 0.1536 0.2153‡♦ 0.3639‡♦ 0.2627‡♦ 0.4476‡♦

With query expansion (k = 10) 0.1901‡ 0.3347‡ 0.1920‡ 0.3302‡ 0.2015‡ 0.3492‡

With query expansion (k = 1000) 0.2036‡ 0.3414‡ 0.1160 0.2210 0.1777 0.3178

Table 4: Final ranking (end-to-end category generation) re-
sults. Statistical significance for lines 3 and 4 is tested
against line 2, and for line 5 it is tested against line 3.

Method NDCG@1 NDCG@10 P@5 MRR@10

BERT [10] 0.5308 0.8261 0.2497 0.6937

Features I 0.5156 0.8149 0.2402 0.6779
Features I+II 0.5516† 0.8290 0.2464† 0.7035†

Features I+III 0.5744‡ 0.8372‡ 0.2421 0.7195‡

Features I+II+III 0.6028‡ 0.8423† 0.2445 0.7363‡

significantly, thanks to its additional features such as the coverage
mechanism. FAST outperforms both PG and NATS substantially
and significantly. This tells us that making use of the salient infor-
mation (in this case: tokens scattered in the entity set) from the
extraction process can improve the performance of seq2seq models
for category generation.

Our initial ranker, SCG (short for Simple Category Generator),
then ranks these candidates based on structure- and content-based
features. The results are displayed in the last row of Table 2. We
find that our inexpensive features are very effective in sorting the
candidates, improving all metrics substantially and statistically
significantly. It should be noted that the comparison between SCG
and the individual generators (PG, NATS, and FAST) is not a fair
one, as SCF has access to all candidates produced by the individual
generators. Nevertheless, these results show that the abstractive
summarizationmethods can produce complementary results to each
other, and our SCG method can effectively rank these candidates.

7.2 Parent Category Identification
Next, we evaluate the capability of our parent category identifica-
tion approach against the test collection developed for this subtask
(cf. Sect. 6.1.3). The results are reported in Table 3, using two set-
tings: considering top 10 or top 1000 candidates returned by BM25,
and then re-ranking them. We expect that going deeper in the ini-
tial BM25 ranking helps to increase coverage, but it also makes the
ranking task more difficult by introducing noise. We consider two
ways to compose the keyword query. First, we take the name of
the category c as is (top block). Second, we apply query expansion
and use the expanded query c̃ (bottom block). The columns cor-
respond to the retrieval method that is used: BM25 (first column),

hierarchy-based (second column), and the combined method (last
column).

The first observation is that our query expansion method sub-
stantially improves effectiveness (rows 1 vs. 3 and 2 vs. 4 in the
first column). This shows that query expansion could narrow the
vocabulary gap caused by the lack of shared tokens between the
category and its parent.

Concerning the comparison of the three ranking models without
query expansion (first block of three columns), hierarchy-based
outperforms BM25 significantly, and the combined method achieves
further substantial and significant improvements for k = 1000.
Notably, for k = 10, we do not observe the same improvements.
This attests to the utility of the topic graph for effectively ranking
a large number of candidates.

When combining the query expansion and ranking methods
(bottom block and third column), the performance varies against
the settings. With k = 10, the method utilizing the expanded query
and combined method performs the best; this is the setting that
we use for the final ranking, given its good trade-off between ef-
fectiveness and computational efficiency. Overall, the combined
method without query expansion with k = 1000 performs best.
These results indicate that it is better to find the topic words in the
late phase instead of refining the query at the beginning when we
have many candidates. Otherwise, when the set of candidates is
small, it is best to combine query expansion with the hierarchy-
based method. In summary, the best strategy to identify the parent
categories is to perform query refinement and choose the ranking
method accordingly, depending on the size of the candidate set.

7.3 Final Ranking
Given the candidate set returned by initial ranking, we identify the
corresponding parent categories, and consider ⟨c, cp ⟩ pairs as input
to the final ranking step. Thus, the results we present in Table 4
are to be seen as the end-to-end evaluation for the whole pipeline.
(Note that this step also considers the parent categories, thus the
results are not directly comparable to the initial ranking results we
presented earlier.) We take BERT as a baseline, and we report its
results in the first line of Table 4. For our proposed approach, we
report on different combinations of features, such as only structure
features (line 2), structure features with content features (line 3),
structure features with importance features (line 4), and all features
(last line). Comparing the different types of features, we find that
content-based features complement the structure features (line 3 vs.
line 2), seen by the increase in scores on all the metrics. Importance

Generating Categories for Sets of Entities CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

Table 5: Example showing the steps of category generation for a given input entity set.

Input List of entities ... Falkland Islands, Gibraltar, Gotland, Greenland, Guernsey, Hitra, Isle of Wight, Jersey, Rhodes, Saare County...
Context ...The Isle of Man are not members of FIFA or UEFA, as the Isle of Man FA are members of The Football Association (The

FA), with similar status to an English county. Since they are not a member of either FIFA or UEFA, they are not eligible to
enter either the World Cup or European Championship....

Ground truth European national and official selection-teams not affiliated to FIFA

Category generation SCG National football teams in the isle of man, Football teams in the isle of man, Isle of man, European national and official
selection-teams not affiliated to FIFA

Category selection BERT 1. National football teams in the isle of man
2. Football teams in the isle of man
3. Isle of man
4. European national and official selection-teams not affiliated to FIFA

Features I+II+III 1. European national and official selection-teams not affiliated to FIFA
2. Isle of man
3. Football teams in the isle of man
4. National football teams in the isle of man

features also enhance performance considerably (line 4 vs. line
2). When combining all the features (line 5), we observe further
performance improvements. Importance features complement the
rest of the features, as can be seen by the increase between line 3
and line 5. As for the comparison against BERT, the NDCG@k and
MRR results show that BERT is good at finding items, but not that
good at ranking them. Our best method (line 5) outperforms BERT
significantly on all the metrics except P@5.

8 ANALYSIS
We perform additional analysis of our results in this section. First,
we present a running example, shown in Table 5, to illustrate each
of the steps of our pipeline (cf. Sect. 3) for generating and ranking
new categories. In this example, the input set of entities is 14 teams
in the Isle of Man that are not affiliated to FIFA. The ground truth
category, as well as its parent categories, are removed from training
data. Apart from the ground truth category, our SCG candidate
generator produces three additional candidate categories; these
four candidates are then ranked by BERT and by our method (using
all feature sets). The respective rankings are shown in the bottom
two lines in Table 5. Comparing with BERT, which put the ground
truth category in the last place, our method successfully placed it
at the top rank.

To investigate the practical utility of our approach, we measure
how often it can return a good recommendation at a high rank
position. Figure 4 shows the distribution of all test cases (i.e., input
entity sets) with respect to reciprocal rank. That is, if the first
relevant category suggestion was returned at rank position k , then
the reciprocal rank is 1/k . We find that in over 60% of all test cases, a
relevant suggestion is returned at the top rank. Further, in over 94%
of the input cases there is always at least one relevant suggestion
returned within the top 5 rank positions. These results demonstrate
that our approach has great merit to be deployed in a practical
environment, e.g., as a category suggestion service in Wikipedia.

9 CONCLUSION
Category systems of large-scale knowledge bases are unique and
valuable resources that can be utilized in a wide range of informa-
tion access tasks. However, they are currently created and main-
tained manually by editors. This paper presents a pipeline approach

Figure 4: The distribution of the number of entity sets in
the test set based on the reciprocal rank at which the first
relevant category suggestion is returned.

to generate categories in an automatic manner, given a set of en-
tities and their context as input. We identify four challenges of
automatic category generation, which are specificity, hierarchy,
redundancy, and importance.

To address the challenge of specificity, the first task of candidate
generation aims to generate candidate categories that are specific
enough given the entity set and context. Given an entity set, we
use abstractive summarization models to generate candidates. The
candidates are initially ranked, leveraging a set of inexpensive
features, based on structure and content, to prune the candidate
set. Experimental results show that the abstractive summarization
models can generate specific candidates, and the initial ranker can
select the most suitable ones.

Parent category identification aims at addressing hierarchy and
redundancy by finding the location of the candidate category in the
current category system. To fill the gap caused by the insufficiency
of term-based matching and (possible) violation of the transitivity
principle, we build a topic graph leveraging all category-parent
pairs in the category system. It is utilized in two ways, to expand
the query and to rank the parent candidates. Experimental results
show that the topic graph can enhance performance by either query
expansion or by hierarchy-based ranking.

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Shuo Zhang, Krisztian Balog, and Jamie Callan

The final ranking step aims to address the challenge of impor-
tance by ranking category-parent pairs. Apart from structure- and
content-based features, it also considers importance features, which
tap into the characteristics of member entities to approximate cat-
egory importance. This effectively complements the other two
groups of features.

We develop a test collection based on Wikipedia categories and
perform both end-to-end and component-level evaluation. We show
the effectiveness of our approach against a BERT-based baseline and
also demonstrate that performance is strong enough to be deployed
in a practical application.

REFERENCES
[1] Abeer Al-Arfaj and AbdulMalik Al-Salman. 2015. Ontology Construction from

Text: Challenges and Trends. International Journal of Artificial Intelligence and
Expert Systems 6, Article 2 (2015), 15-26 pages.

[2] Krisztian Balog, Marc Bron, and Maarten De Rijke. 2011. Query modeling for
entity search based on terms, categories, and examples. ACM Trans. Inf. Syst. 29,
4, Article 22 (Dec. 2011), 22:1–22:31 pages.

[3] Ivan Bedini. 2007. Automatic Ontology Generation : State of the Art. Molecular
Evolution 44, Article 2 (2007), 226-233 pages.

[4] Chris Biemann. 2005. Ontology Learning from Text: A Survey of Methods. LDV
Forum 20, 2 (2005), 75–93.

[5] David M. Blei, Thomas L. Griffiths, and Michael I. Jordan. 2010. The Nested
Chinese Restaurant Process and Bayesian Nonparametric Inference of Topic
Hierarchies. J. ACM 57, 2, Article 7 (Feb. 2010), 30 pages.

[6] Paolo Boldi and Corrado Monti. 2016. Cleansing Wikipedia Categories Using
Centrality. In Proceedings of the 25th International Conference Companion onWorld
Wide Web (WWW ’16 Companion). 969–974.

[7] Yen-Chun Chen and Mohit Bansal. 2018. Fast Abstractive Summarization with
Reinforce-Selected Sentence Rewriting. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). 675–686.

[8] Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettlemoyer. 2018. Ultra-Fine
Entity Typing. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics. 87–96.

[9] Marek Ciglan, Kjetil Nørvåg, and Ladislav Hluchý. 2012. The SemSets Model for
Ad-hoc Semantic List Search. In Proceedings of the 21st International Conference
on World Wide Web (WWW ’12). 131–140.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018).

[11] David Graus, Daan Odijk, and Maarten de Rijke. 2018. The Birth of Collec-
tive Memories: Analyzing Emerging Entities in Text Streams. Journal of the
Association for Information Science and Technology 69, 6 (2018), 773–786.

[12] Braden Hancock, Hongrae Lee, and Cong Yu. 2019. Generating Titles for Web
Tables. In The World Wide Web Conference (WWW ’19). 638–647.

[13] Johannes Hoffart, Yasemin Altun, and Gerhard Weikum. 2014. Discovering
Emerging Entities with Ambiguous Names. In Proceedings of the 23rd International
Conference on World Wide Web (WWW ’14). 385–396.

[14] Heng Ji and Ralph Grishman. 2011. Knowledge Base Population: Successful
Approaches and Challenges. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies - Volume
1 (HLT ’11). 1148–1158.

[15] Rianne Kaptein and Jaap Kamps. 2013. Exploiting the Category Structure of
Wikipedia for Entity Ranking. Artif. Intell. 194 (Jan. 2013), 111–129.

[16] Alexander Kirillovich and Olga Nevzorova. 2018. Ontological Analysis of the
Wikipedia Category System. In Proceedings of the 10th International Joint Confer-
ence on Knowledge Discovery, Knowledge Engineering and Knowledge Management,
(IC3K ’18). 356–364.

[17] Mark Lauer. 1996. Designing Statistical Language Learners: Experiments on
Noun Compounds. CoRR cmp-lg/9609008 (1996).

[18] Dawn Lawrie, W. Bruce Croft, and Arnold Rosenberg. 2001. Finding Topic Words
for Hierarchical Summarization. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’01). 349–357.

[19] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016. A
Large Public Corpus of Web Tables Containing Time and Context Metadata. In
Proceedings of the 25th International Conference Companion on World Wide Web
(WWW ’16 Companion). 75–76.

[20] Denghao Ma, Yueguo Chen, Kevin Chen-Chuan Chang, Xiaoyong Du, Chuanfei
Xu, and Yi Chang. 2018. Leveraging Fine-Grained Wikipedia Categories for
Entity Search. In Proceedings of the 2018 World Wide Web Conference (WWW ’18).
1623–1632.

[21] Deborah L. McGuinness. 2002. Ontologies Come of Age. Spinning the Semantic
Web: Bringing the World Wide Web to Its Full Potential (2002), 171–195.

[22] David Nadeau and Satoshi Sekine. 2007. A survey of named entity recognition
and classification. Lingvisticae Investigationes 30, 1 (2007), 3–26.

[23] Vivi Nastase and Michael Strube. 2008. Decoding Wikipedia Categories for
Knowledge Acquisition. In Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 2 (AAAI’08). 1219–1224.

[24] Vivi Nastase and Michael Strube. 2013. Transforming Wikipedia into a Large
Scale Multilingual Concept Network. Artif. Intell. 194 (Jan. 2013), 62–85.

[25] Rasha Obeidat, Xiaoli Fern, Hamed Shahbazi, and Prasad Tadepalli. 2019.
Description-Based Zero-shot Fine-Grained Entity Typing. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. 807–814.

[26] Marius Paşca. 2017. German Typographers vs. German Grammar: Decomposition
of Wikipedia Category Labels into Attribute-Value Pairs. In Proceedings of the
Tenth ACM International Conference on Web Search and Data Mining (WSDM ’17).
315–324.

[27] Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A Deep Reinforced
Model for Abstractive Summarization. CoRR abs/1705.04304 (2017).

[28] Aleksander Pivk. 2005. Automatic Ontology Generation from Web Tabular
Structures. AI Communications 19 (2005), 83–85.

[29] Xiang Ren,Wenqi He, Meng Qu, Lifu Huang, Heng Ji, and Jiawei Han. 2016. AFET:
Automatic Fine-Grained Entity Typing by Hierarchical Partial-Label Embedding.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing.

[30] Dominique Ritze and Christian Bizer. 2017. Matching Web Tables To DBpedia
- A Feature Utility Study. In Proceedings of the 20th International Conference on
Extending Database Technology (EDBT ’17). 210–221.

[31] Dominique Ritze, Oliver Lehmberg, and Christian Bizer. 2015. Matching HTML
Tables to DBpedia. In Proceedings of the 5th International Conference on Web
Intelligence, Mining and Semantics (WIMS ’15). Article 10, 6 pages.

[32] Mark Sanderson and Bruce Croft. 1999. Deriving Concept Hierarchies from Text.
In Proceedings of the 22Nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’99). 206–213.

[33] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point:
Summarization with Pointer-Generator Networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 1073–1083.

[34] Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan K. Reddy. 2018.
Neural Abstractive Text Summarization with Sequence-to-Sequence Models.
CoRR (2018).

[35] Emilia Stoica, Marti Hearst, andMegan Richardson. 2007. Automating Creation of
Hierarchical Faceted Metadata Structures. In Human Language Technologies 2007:
The Conference of the North American Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference. 244–251.

[36] Xiangyan Sun, Yanghua Xiao, HaixunWang, andWeiWang. 2015. On Conceptual
Labeling of a Bag of Words. In Proceedings of the 24th International Conference on
Artificial Intelligence (IJCAI ’15). 1326–1332.

[37] MohamedAmir Yosef, Sandro Bauer, JohannesHoffart, Marc Spaniol, and Gerhard
Weikum. 2012. HYENA: Hierarchical Type Classification for Entity Names. In
Proceedings of COLING 2012: Posters. 1361–1370.

[38] Jonathan Yu, James A. Thom, and Audrey Tam. 2007. Ontology Evaluation
Using Wikipedia Categories for Browsing. In Proceedings of the Sixteenth ACM
Conference on Conference on Information and Knowledge Management (CIKM ’07).
223–232.

[39] Shuo Zhang and Krisztian Balog. 2017. EntiTables: Smart Assistance for Entity-
Focused Tables. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’17). 255–264.

[40] Shuo Zhang and Krisztian Balog. 2019. Auto-completion for Data Cells in Rela-
tional Tables. In Proceedings of the 28th ACM International Conference on Infor-
mation and Knowledge Management (CIKM ’19). 761–770.

[41] Shuo Zhang and Krisztian Balog. 2020. Web Table Extraction, Retrieval, and
Augmentation: A Survey. ACM Trans. Intell. Syst. Technol. 11, 2, Article Article
13 (Jan. 2020), 35 pages.

[42] Shuo Zhang, Edgar Meij, Krisztian Balog, and Ridho Reinanda. 2020. Novel Entity
Discovery from Web Tables. In Proceedings of The Web Conference 2020 (WWW
’20). 1298–1308.

[43] Ben Zhou, Daniel Khashabi, Chen-Tse Tsai, and Dan Roth. 2018. Zero-Shot
Open Entity Typing as Type-Compatible Grounding. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. 2065–2076.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement and Overview
	4 Category Generation
	4.1 Candidate Generation
	4.2 Initial Ranking

	5 Category Selection
	5.1 Parent Category Identification
	5.2 Final Ranking

	6 Experimental setup
	6.1 Test Collections
	6.2 Experimental Setup

	7 Evaluation
	7.1 Category Generation
	7.2 Parent Category Identification
	7.3 Final Ranking

	8 Analysis
	9 Conclusion
	References

